Operational prototype work at CERN

Status report

Evaluation of L3 ($2.4 \times 1 \mathrm{~m}^{2}$)

- L3 is the second $2.4 \times 1 \mathrm{~m}^{2}$ prototype that had been built; it differed from L2 by adding three panel interconnections, spaced by 50 cm
- L3 suffered (like L2) from gas leaks in the drift panel
- Suspect gas leaks through mesh frame screw holes; frames were not glued, screws not sealed (to be avoided in the future)
- Gas penetrates into the drift panel
- Fixed by sealing the drift panel skins with Araldite glue.
- Measurement of mechanical deformations
- Effect of gas pressure
- Test of panel interconnections

Drift panel (without R/O panel)

- Mesh tension ($\approx 10 \mathrm{~N} / \mathrm{cm}$) produces banana effect
- Deformation is $\approx 1 \mathrm{~mm}$ in the centre
- Requires $\mathrm{W} \approx 8 / 11 / 8 \mathrm{~kg}$ to flatten drift panel (th=15 mm)

1(23)4\$(\% \& \$5" (46" 7 " $\# \$$ \% 8 89\$, 1

Evaluation of L3 (cont'd)

- Measurement of mechanical deformations of assembled detector
- Observe similar 'banana' effect as for drift panel alone
- Gas pressure leads to deformation of 500 and $800 \mu \mathrm{~m}$ for 6 mbar overpressure (operating pressure is $\leq 2 \mathrm{mbar}$) for drift (15 mm) and r / o panels (10 mm)
- Panel interconnects (every $\approx 50 \mathrm{~cm}$)
- Reduces banana effect
- Eliminates the gas pressure effect

L3 assembled - Drift panel surface

Interconnecting screws

L3 assembled - readout panel surface

Central line

Interconnections

Conclusions from L3 measurements

- Mesh tension creates panel deformation, needs attention
- Concept of internal spacers works
- Eliminates deformation of panels caused by the gas pressure
- Distances between spacers to be optimized
- More precise measurements using the laser interferometer will follow shortly
- Will try to compensate 'banana' effect during the assembly
- More results ... in the January meeting

The MMSW project

- Install a MM detector as similar as possible to the NSW detectors on the present Small Wheel next summer, before ATLAS closes
- Detector dimensions: $1.2 \times 0.5 \mathrm{~m}^{2}$ (to fit upper half of large CSC)
- Four layers (quadruplet), 2 eta and 2 stereo
- Strip pitch $0.425 \mathrm{~mm}, 1024$ strips/layer
- PCB production as close as possible to final production
- Panel construction and assembly serve as prototype for Module 0
- Readout electronics
- ATCA SRS as DAQ system
- Front-end boards (SRS compatible) with 8 VMM2 chips/board (backup: APV25)
- Collaborative effort
- CERN, Japan, Mainz, Lecce, Napoli, ... for detector construction
- Bucharest, BNL, Arizona, ... for electronics

PCB production

- PCB production method as in final production, however, PCBs are smaller in size

1. Etching of readout pattern on PCB (Eltos, Italy); expect boards to arrive next week
2. Production of Kapton foils with resistive strips (Japan); done
3. Glueing of resistive strip foils at CERN
4. Making of pillars at CERN
5. Cutting and drilling at CERN

Panel construction (PH-DT)

- Method follows the very successful $50 \times 50 \mathrm{~cm}^{2}$ prototype panel construction (flatness $\leq 20 \mu \mathrm{~m}$)
- Vacuum table \& stiffback
- Flat surfaces are produced on a marble table
- Stiffness is achieved by 60 mm high Al honey-comb core
- Vacuum pumping through flat surface
- Stiffback of $50 \times 50 \mathrm{~cm}^{2}$ has been produced and tested
- Vacuum table follows same principle
- Stiffback and vacuum table incorporate positioning pins for PCB alignment

Panel construction tool

- Vacuum table + vacuum stiff-back
- Positioning pins for PCB alignment incorporated in frames
- Flat surfaces produced on marble table; does not require machining of flat surface
- Stiffness by thick honeycomb core
- Light, but stiff, structure, cheap
- Replaces marble

The $50 \times 50 \mathrm{~cm}^{2}$ prototype

Work by Francisco Perez \& Jordan Degrange (PHDT)

Status of MMSW

- Readout PCBs in production, expected to be delivered by mid November
- Vacuum table \& stiff-back
- Parts ordered, construction to start next week
- Expected to be completed by 22 November
- Panel glueing
- Design of mechanical parts and drawings done
- Material ordered
- Expect glueing to start in last week of November

