The thermal photon rate

at nextłto-leading order

(and a sneak peek at jets)

Jacopo Ghiglieri, McGill University in collaboration with J. Hong, E. Lu, A. Kurkela, G. Moore, D. Teaney
CERN, November 1 st 2013

Hard probes

- Heavy-ion collisions: experimental investigation of the deconfined phase of the diagram

Hard probes

- Heavy-ion collisions: experimental investigation of the deconfined phase of the diagram

- Characterization of the medium through 2 classes of observables:
- Bulk properties (hydro, flow, etc...)
- Hard probes (jets, e/m probes, quarkonia...)

Phołons from heavy ion collisions

- The hard partonic processes in the heavy ion collision produce quarks, gluons and primary photons

Phołons from heavy ion collisions

- The hard partonic processes in the heavy ion collision produce quarks, gluons and primary photons
- At a later stage, quarks and gluons form a plasma.
- A jet traveling through the QGP can radiate jet-thermal photons
- Scatterings of thermal partons can produce thermal photons

Photons from heavy ion collisions

- The hard partonic processes in the heavy ion collision produce quarks, gluons and primary photons
- At a later stage, quarks and gluons form a plasma.
- A jet traveling through the QGP can radiate jet-thermal photons
- Scatterings of thermal partons can produce thermal photons
- Later on, partons hadronize. Interactions between charged hadrons produce hadron gas thermal photons

Photons from heavy ion collisions

- The hard partonic processes in the heavy ion collision produce quarks, gluons and primary photons
- At a later stage, quarks and gluons form a plasma.
- A jet traveling through the QGP can radiate jet-thermal photons
- Scatterings of thermal partons can produce thermal photons
- Later on, partons hadronize. Interactions between charged hadrons produce hadron gas thermal photons
- Hadrons may decay into decay photons

Jets in heavy-ion collisions

CMS PRC84 (2011)

- Jet broadening $\left\langle k_{\perp}^{2}\right\rangle \equiv \hat{q} L$
- Jet energy loss/jet quenching

Motivation

- Improve the phenomenological analyses, if not by giving reliable theory error bands
- On the theory side, understand perturbation theory and its convergence better
- For thermodynamical quantities (p, s, \ldots) either strict expansion in g, QCD $(T)+$ EQCD $(g T)+$ MQCD $\left(g^{2} T\right)$ (Arnold-Zhai, Braaten Nieto, etc) or non-perturbative solution of EQCD (Kajantie Laine etc)
- For dynamical quantities? Poor convergence in heavyquark diffusion coefficient

NLO transport coefficients

- The only transport coefficient known so far at NLO is the heavy quark momentum diffusion coefficient, which is defined through the noise-noise correlator in a Langevin formalism. In field theory it can be written as

$$
\kappa=\frac{g^{2}}{3 N_{c}} \int_{-\infty}^{+\infty} d t \operatorname{Tr}\left\langle U(t,-\infty)^{\dagger} E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right\rangle
$$

NLO transport coefficients

- The only transport coefficient known so far at NLO is the heavy quark momentum diffusion coefficient, which is defined through the noise-noise correlator in a Langevin formalism. In field theory it can be written as

$$
\kappa=\frac{g^{2}}{3 N_{c}} \int_{-\infty}^{+\infty} d t \operatorname{Tr}\left\langle U(t,-\infty)^{\dagger} E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right\rangle
$$

- The NLO computation factors in the coefficient C , which turns out to be sizeable

$$
\kappa=\frac{C_{H} g^{4} T^{3}}{18 \pi}\left(\left[N_{\mathrm{c}}+\frac{N_{\mathrm{f}}}{2}\right]\left[\ln \frac{2 T}{m_{D}}+\xi\right]+\frac{N_{\mathrm{f}} \ln 2}{2}+\frac{N_{\mathrm{c}} m_{D}}{T} C+\mathcal{O}\left(g^{2}\right)\right) \quad \xi=\frac{1}{2}-\gamma_{E}+\frac{\zeta^{\prime}(2)}{\zeta(2)}
$$

Caron-Huot Moore PRL100, JHEP0802 (2008)

NLO transport coefficients

Overview

The thermal photon rate

- Wightman current-current correlator (with $k^{0}=k \sim T$ hard)

$$
\frac{d \Gamma}{d^{3} k}=\frac{e^{2}}{(2 \pi)^{3} 2 k^{0}} \int d^{4} Y e^{-i K \cdot Y}\left\langle J^{\mu}(Y) J_{\mu}(0)\right\rangle \quad J^{\mu}=\sum_{q=u d s} e_{q} \overline{\gamma^{\mu}} q: \backsim
$$

- At one loop $\left(\alpha_{\mathrm{EM}} g^{0}\right)$:

Kinematically impossible to radiate an on-shell photon from on-shell quarks. Need something to kick one of the quarks off-shell

- LO is $\alpha_{\text {EM }} g^{2}$

Kinematical regions

- Define a light-cone $K=(k, 0,0)$

$$
P=\left(p^{+}, p^{-}, p_{\perp}\right) \quad p^{+}=\left(p^{0}+p^{z}\right) / 2 \quad p^{-}=p^{0}-p^{z}
$$

- Momentum conservation at the current insertion gives three regions

$$
J^{\mu}=\sum_{q=u d s} e_{q} \bar{q} \gamma^{\mu} q: \sim
$$

- Hard off-shell

- Soft, smaller phase space but enhancement
- Collinear, both nearly on shell and enhanced

Kinematical regions

- In the $\left(p^{+}, p_{\perp}\right)$ plane

The hard region

- Two loop diagrams $\left(\alpha_{\mathrm{EM}} g^{2}\right)$

where the cuts correspond to the so-called $2 \leftrightarrow 2$ processes (with their crossings and interferences):

- Perturbation theory works here, α_{s} expansion
- IR divergence (Compton) when t goes to zero $P \rightarrow\left(T, g^{2} T, g T\right)$

The soft region

- Hard Thermal Loop effective theory Braaten Pisarski

$$
\begin{aligned}
\delta \mathcal{L} & =-\frac{m_{D}^{2}}{2} \operatorname{Tr} \int \frac{d \Omega_{v}}{4 \pi} F^{\mu \alpha} \frac{v_{\alpha} v_{\beta}}{(v \cdot D)^{2}} F_{\mu}^{\beta}+i \omega_{0}^{2} \bar{\psi} \int \frac{d \Omega_{v}}{4 \pi} \frac{\nLeftarrow}{v \cdot D} \psi \\
v & =(1, \mathbf{v}) \quad v^{2}=0
\end{aligned}
$$

The soft region

- Hard Thermal Loop effective theory Braaten Pisarski

$$
\begin{aligned}
\delta \mathcal{L} & =-\frac{m_{D}^{2}}{2} \operatorname{Tr} \int \frac{d \Omega_{v}}{4 \pi} F^{\mu \alpha} \frac{v_{\alpha} v_{\beta}}{(v \cdot D)^{2}} F_{\mu}^{\beta}+i \omega_{0}^{2} \bar{\psi} \int \frac{d \Omega_{v}}{4 \pi} \frac{\nLeftarrow}{v \cdot D} \psi \\
v & =(1, \mathbf{v}) \quad v^{2}=0
\end{aligned}
$$

- The Landau cut of the HTL propagator opens up the phase space in this (apparently one-loop) diagram

The soft region

- Hard Thermal Loop effective theory Braaten Pisarski

$$
\begin{aligned}
\delta \mathcal{L} & =-\frac{m_{D}^{2}}{2} \operatorname{Tr} \int \frac{d \Omega_{v}}{4 \pi} F^{\mu \alpha} \frac{v_{\alpha} v_{\beta}}{(v \cdot D)^{2}} F_{\mu}^{\beta}+i \omega_{0}^{2} \bar{\psi} \int \frac{d \Omega_{v}}{4 \pi} \frac{\psi}{v \cdot D} \psi \\
v & =(1, \mathbf{v}) \quad v^{2}=0
\end{aligned}
$$

- The Landau cut of the HTL propagator opens up the phase space in this (apparently one-loop) diagram

- In the end one obtains the result

$$
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{2 \leftrightarrow 2} \propto e^{2} g^{2}\left[\log \frac{T}{m_{\infty}}+C_{2 \leftrightarrow 2}\left(\frac{k}{T}\right)\right]
$$

The dependence on the cutoff cancels out

The collinear region

- Collinear enhancement in these diagrams

Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000

- Long photon formation time $\sim 1 /\left(g^{2} T\right)$, same as soft scattering rate. Multiple soft scatterings interfere and must be resummed => Landau-Pomeranchuk-Migdal effect (LPM)

The
 effect

- Introduced by Landau and Pomeranchuk (then Migdal) for QED in the 50's
- Extended to photons in QCD in Baier Dokshitzer Mueller Peigne Schiff NPB478 (1996) Zakharov 96-98
- Rigorous treatment and diagrammatics in AMY (Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)
- In the JJ correlator diagrams like
have to be resummed consistently

LPM resummation

- Quark statistical functions \times DGLAP splitting \times transverse evolution

$$
\frac{d \Gamma}{d^{3} k}=\frac{\alpha}{\pi^{2} k} \int \frac{d p^{+}}{2 \pi} n_{\mathrm{F}}\left(k+p^{+}\right)\left[1-n_{\mathrm{F}}\left(p^{+}\right)\right] \frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{2\left(p^{+}\left(p^{+}+k\right)\right)^{2}} \lim _{\mathrm{x}_{\perp} \rightarrow 0} 2 \operatorname{Re} \nabla_{\mathbf{x}_{\perp}} \mathbf{f}\left(x_{\perp}\right)
$$

$$
\begin{gathered}
x^{+} \gg x_{\perp} \gg x^{-} \\
1 / g^{2} T \gg 1 / g T \gg 1 / T
\end{gathered}
$$

LPM resummation

- Quark statistical functions \times DGLAP splitting \times transverse evolution

$$
\frac{d \Gamma}{d^{3} k}=\frac{\alpha}{\pi^{2} k} \int \frac{d p^{+}}{2 \pi} n_{\mathbb{F}}\left(k+p^{+}\right)\left[1-n_{\mathbb{F}}\left(p^{+}\right)\right] \frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{2\left(p^{+}\left(p^{+}+k\right)\right)^{2}} \lim _{\mathrm{x}_{\perp} \rightarrow 0} 2 \operatorname{Re} \nabla_{\mathrm{x}_{\perp}} \mathrm{f}\left(x_{\perp}\right)
$$

- Transverse diffusion and Wilson-loop correlators evolve the transverse density \mathbf{f} along the spacetime light-cone

$$
-2 i \nabla \delta^{2}\left(\mathbf{x}_{\perp}\right)=\left[\frac{i k}{2 p^{+}\left(k+p^{+}\right)}\left(m_{\infty}^{2}-\nabla_{\mathbf{x}_{\perp}}^{2}\right)+\mathcal{C}\left(x_{\perp}\right)\right] \mathbf{f}\left(\mathbf{x}_{\perp}\right)
$$

$$
\begin{gathered}
x^{+} \gg x_{\perp} \gg x^{-} \\
1 / g^{2} T \gg 1 / g T \gg 1 / T
\end{gathered}
$$

Zakharov 1996-98 AMY 2001-02

LPM resummation

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D'Eramo Liu Rajagopal, Benzke Brambilla Escobedo Vairo

- All points at spacelike or lightlike separation, only preexisting correlations
- Soft contribution becomes Euclidean! Caron-Huot PRD79 (2008)
- Can be "easily" computed in perturbation theory
- Possible lattice measurements Laine Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer $\mathbf{1 3 0 7 . 5 8 5 0}$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$ $G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$ $G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$
- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$
- Soft physics dominated by $n=0$ (and t-independent)
$=>E Q C D!$
Caron-Huot PRD79 (2009)

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}

$$
G_{r r}(t, \mathbf{x})_{\mathrm{soft}}=T \int d^{3} p e^{i \mathbf{p} \cdot \mathbf{x}} G_{E}\left(\omega_{n}=0, \mathbf{p}\right)
$$

- Soft physics dominated by $n=0$ (and t-independent) $=>E Q C D!$

Euclideanization of light-cone soft

 physics

- At leading order

$$
C\left(x_{\perp}\right) \propto T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \perp q_{\perp}}\right) G_{E}^{++}\left(\omega_{n}=0, q_{z}=0, q_{\perp}\right)=T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \cdot q_{\perp}}\right)\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}}\right)
$$

- Agrees with the earlier sum rule in Aurenche Gelis Zaraket JHEP0205 (2002)
- At NLO: Caron-Huot PRD79 (2009)

Going to NLO

- As usual in thermal field theory, the soft scale $g T$ introduces NLO $O(g)$ corrections
- The soft region and the collinear region both receive $O(g)$ corrections
- There is a new semi-collinear region
- The NLO calculation is still not sensitive to the magnetic scale $g^{2} T$.

NLO regions

NLO asymptotic mass

- The soft contribution is large and handled incorrectly. This part of the integrand needs to be subtracted and replaced by a proper evaluation with HTL
- NLO correction computed in Caron-Huot PRD79 (2009) with Euclidean techniques

$$
\delta m_{\infty}^{2}=2 g^{2} C_{R} T \int \frac{d^{3} q}{(2 \pi)^{3}}\left(\frac{1}{q^{2}+m_{D}^{2}}-\frac{1}{q^{2}}\right)=-g^{2} C_{R} \frac{T m_{D}}{2 \pi}
$$

The collinear sector

- The AMY resummation equation is

$$
\frac{d \Gamma}{d^{3} k}=\frac{\alpha}{\pi^{2} k} \int \frac{d p^{+}}{2 \pi} n_{\mathrm{F}}\left(k+p^{+}\right)\left[1-n_{\mathrm{F}}\left(p^{+}\right)\right] \frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{2\left(p^{+}\left(p^{+}+k\right)\right)^{2}} \lim _{\mathbf{x}_{\perp} \rightarrow 0} 2 \operatorname{Re} \nabla_{\mathbf{x}_{\perp}} \mathbf{f}\left(x_{\perp}\right)
$$

- Four sources of $O(g)$ corrections
- $p^{+} \sim g T$ or $p^{+}+k \sim g T$. Mistreated soft limit

$$
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{\text {soft }} ^{\text {subtr. }}=\frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int_{-\mu^{+}}^{+\mu^{+}} d p^{+} \frac{8}{T} \int \frac{d^{2} p_{\perp} d^{2} q_{\perp}}{(2 \pi)^{4}} \frac{m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)}\left(\frac{\mathbf{p}_{\perp}}{p_{\perp}^{2}+m_{\infty}^{2}}-\frac{\mathbf{p}_{\perp}+\mathbf{q}_{\perp}}{\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)^{2}+m_{\infty}^{2}}\right)^{2}
$$

- $p_{\perp} \sim \sqrt{g} T, p^{-} \sim g T$. Mistreated semi-collinear limit
- The two inputs in the differential equation, m_{∞}^{2} and $\mathcal{C}\left(x_{\perp}\right)$ receive $O(g)$ corrections.

The NLO soft region

- 4 diagrams with HTL vertices and propagators on the soft line
- Could brute-force them numerically. Or think again about analyticity, light-cones

Fermionic sum rules

- We have found the fermionic analogue of the AGZ sum rule
- The leading-order soft contribution (P fully soft)

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\mathrm{soft}}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

where

$$
\begin{aligned}
& S(P)=\frac{1}{2}\left[\left(\gamma^{0}-\vec{\gamma} \cdot \hat{p}\right) S^{+}(P)+\left(\gamma^{0}+\vec{\gamma} \cdot \hat{p}\right) S^{-}(P)\right] \\
& S_{R}^{ \pm}(P)=\left.\frac{i}{p^{0} \mp\left[p+\frac{\omega_{0}^{2}}{p}\left(1-\frac{p^{0} \mp p}{2 p} \ln \left(\frac{p^{0}+p}{p^{0}-p}\right)\right)\right]}\right|_{p^{0}=p^{0}+i \epsilon}
\end{aligned}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k}{ }_{\text {soft }} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

- The integral then gives simply

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k}{ }_{\text {soft }} \propto \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

- The integral then gives simply

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\mathrm{soft}}} \propto \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}
$$

- The p_{\perp} integral is UV-log divergent, giving the LO UVdivergence that cancels the IR divergence at the hard scale, now analytically
Independently obtained by Besak Bödeker JCAP1203 (2012)

The

- At NLO one can use the KMS relations and the $r a$ basis to write the diagrams in terms of fully retarded and fully advanced functions of P. The hard only depend on p^{-}.
- The contour deformations are then again possible and the diagrams can be expanded for large complex p^{+}. On general grounds we expect
$\left.(2 \pi)^{3} \frac{d \delta \Gamma_{\gamma}}{d^{3} k}\right|_{\text {soft }} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}}\left[C_{0}\left(\frac{1}{p^{+}}\right)^{0}+C_{1}\left(\frac{1}{p^{+}}\right)^{1}+\ldots\right]$

The soft region

- The $\left(1 / p^{+}\right)^{0}$ term has to be exactly the subtraction term we have seen before in the collinear region, to cancel the cutoff dependence. Confirmed by explicit calculation
- At order $1 / p^{+}$we had the LO result. We can expect

$$
\frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}} \rightarrow \frac{m_{\infty}^{2}+\delta m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}+\delta m_{\infty}^{2}}=\left(\frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\frac{\delta m_{\infty}^{2} p_{\perp}^{2}}{\left(p_{\perp}^{2}+m_{\infty}^{2}\right)^{2}}+\mathcal{O}\left(g^{2}\right)\right)
$$

The explicit calculation finds just this contribution.

- The contribution from HTL vertices goes like $\left(1 / p^{+}\right)^{2}$ or smaller on the arcs.

The semi-collinear region

P semi-collinear
Q soft

- Kinematical regions \Rightarrow partly different processes
- Q timelike $\Rightarrow 2 \leftrightarrow 2$ processes with massive (plasmon) gluon
- Q spacelike $\Rightarrow 2 \leftrightarrow 3$ processes: wider-angle bremsstrahlung and pair annihilation, no LPM interference

The semi-collinear region

- Subtraction term from the collinear region

$$
\begin{aligned}
\left.\frac{d \delta \Gamma_{\gamma}}{d^{3} k}\right|_{\text {semi-coll }} ^{\text {coll subtr. }}= & 2 \frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int d p^{+}\left[\frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}\right] \frac{n_{F}\left(k+p^{+}\right)\left[1-n_{F}\left(p^{+}\right)\right]}{n_{F}(k)} \\
& \times \frac{1}{g^{2} C_{R} T^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{4\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}{k^{2} p_{\perp}^{4}} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} \mathcal{C}\left(q_{\perp}\right) .
\end{aligned}
$$

- Proper evaluation: replace

$$
\frac{\hat{q}}{g^{2} C_{R}} \equiv \frac{1}{g^{2} C_{R}} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} \mathcal{C}\left(q_{\perp}\right)=\int \frac{d^{4} Q}{(2 \pi)^{3}} \delta\left(q^{-}\right) q_{\perp}^{2} G_{r r}^{++}(Q)
$$

with
$\frac{\hat{q}(\delta E)}{g^{2} C_{R}} \equiv \int_{-\infty}^{\infty} d x^{+} e^{i x^{+} \delta E} \frac{1}{d_{A}}\left\langle v_{k}^{\mu} F_{\mu}{ }^{\nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k}^{\rho} F_{\rho \nu}(0)\right\rangle$,
because $\delta E \sim g T$ is no longer negligible

- Another light-cone / Euclidean condensate

Light-cone condensates

- Asymptotic mass Caron-Huot PRD79 (2009)

$$
\begin{aligned}
m_{\infty}^{2} & =g^{2} C_{R}\left(Z_{g}+Z_{f}\right) \\
Z_{g} & \equiv \frac{1}{d_{A}}\left\langle v_{\mu} F^{\mu \rho} \frac{-1}{(v \cdot D)^{2}} v_{\nu} F_{\rho}^{\nu}\right\rangle \quad v_{k}=(1,0,0,1) \\
& =\frac{-1}{d_{A}} \int_{0}^{\infty} d x^{+} x^{+}\left\langle v_{k \mu} F_{a}^{\mu \nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}^{a b}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k \rho} F_{b \nu}^{\rho}(0)\right\rangle \\
Z_{f} & \equiv \frac{1}{2 d_{R}}\left\langle\bar{\psi} \frac{\not p}{v \cdot D} \psi\right\rangle
\end{aligned}
$$

- $\delta E-d e p e n d e n t ~ q h a t ~$
$\frac{\hat{q}(\delta E)}{g^{2} C_{R}} \equiv \int_{-\infty}^{\infty} d x^{+} e^{i x^{+} \delta E} \frac{1}{d_{A}}\left\langle v_{k}^{\mu} F_{\mu}{ }^{\nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k}^{\rho} F_{\rho \nu}(0)\right\rangle$,
For $\delta \mathrm{E} \rightarrow 0$ the standard definition is recovered

The semi-collinear region

P semi-collinear
Q soft

- Limits and divergences
$\uparrow p_{\perp} \rightarrow \infty(\delta E \rightarrow \infty)$ subtract the hard limit
$\downarrow \mathrm{p}_{\perp} \rightarrow 0$ subtract the collinear limit $\left(p_{\perp} \gg q_{\perp}\right)$
$\swarrow \mathrm{p}_{\perp} \rightarrow 0 \wedge p^{+} \rightarrow 0$ IR \log, combines with UV soft \log (NLO log)
- Aside from the IR-log, the general behaviour of the P integration can only be obtained numerically.

Results

Summary

- LO rate

$$
\begin{aligned}
\left.(2 \pi)^{3} \frac{d \Gamma}{d^{3} k}\right|_{\mathrm{LO}} & =\mathcal{A}(k) \overbrace{\left[\log \frac{T}{m_{\infty}}+C_{2 \rightarrow 2}(k)+C_{\mathrm{coll}}(k)\right]}^{C_{\mathrm{LO}}(k)} \\
\mathcal{A}(k) & =\alpha_{\mathrm{EM}} g^{2} C_{F} T^{2} \frac{n_{\mathrm{F}}(k)}{2 k} \sum_{f} Q_{f}^{2} d_{f}
\end{aligned}
$$

- NLO correction

$\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO}}=\mathcal{A}(k) \overbrace{[\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \frac{\sqrt{2 T m_{D}}}{m_{\infty}}+\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{soft}+\mathrm{sc}}(k)}_{\delta C_{\mathrm{soft}+\mathrm{sc}}(k)}+\underbrace{\delta m_{\infty}^{2}}_{\delta C_{\mathrm{coll}}(k)} C_{\mathrm{coll}}^{\delta m}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\mathrm{coll}}^{\delta \mathcal{C}}(k)}^{\delta C_{\mathrm{NLO}}(k)}]$

$$
\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO}}=\mathcal{A}(k) \overbrace{[\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \frac{\sqrt{2 T m_{D}}}{m_{\infty}}+\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{soft}+\mathrm{sc}}(k)}_{\delta C_{\mathrm{soft}+\mathrm{sc}}(k)}+\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{coll}}^{\delta m}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\mathrm{coll}}^{\delta \mathcal{C}}(k)}_{\delta C_{\mathrm{coll}}(k)}]}
$$

$\delta C_{\mathrm{NLO}}(k)$

$$
\begin{aligned}
& \text { k/T }
\end{aligned}
$$

A sneak peek at jets

Jet evolution at LO

- Apply similar technologies to jet evolution and E-loss
- Start from effective Boltzmann-Fokker-Planck approach

$$
\frac{d P(p)}{d t}=\int_{-\infty}^{+\infty} d k\left(P(p+k) \frac{d \Gamma(p+k, k)}{d k}-P(p) \frac{d \Gamma(p, k)}{d k}\right)
$$

AMY JHEP0301 (2003) Jeon Moore PRC71 (2005)

- $1 \leftrightarrow 2$ and $2 \leftrightarrow 2$ processes in the rates. The former a generalization of the collinear photon emission to gluons. The latter require HTL resummation. In both cases everything but the jet is in equilibrium
- LO rates implemented in MARTINI Schenke Gale Jeon PRC80 (2009)

Jet evolution at NLO

- Again, need to account for NLO corrections in collinear, semi-collinear and soft regions
- The first two are rather straightforward generalizations of the photon case
- The latter requires some work. In the soft limit $2 \leftrightarrow 2$ exchanges reduce to an energy-loss/momentum diffusion picture

$Q \cdot P \approx 0$ defines new lightcone

Jet evolution at NLO

- Soft limit of the Fokker-Planck equation

$$
\begin{aligned}
\frac{d P(p)}{d t}= & \int_{-\infty}^{\infty} d q^{+} \frac{d \Gamma\left(p, q^{+}\right)}{d q^{+}}\left(q^{+} \frac{d P(p)}{d p^{+}}+\frac{\left(q^{+}\right)^{2}}{2} \frac{d^{2} P(p)}{d\left(p^{+}\right)^{2}}\right) \\
& +\frac{1}{4} \nabla_{\perp}^{2} P(p) \int d^{2} q_{\perp} q_{\perp}^{2} \frac{d \Gamma\left(p, q^{+}\right)}{d^{2} q_{\perp}}
\end{aligned}
$$

- Energy loss term $d E / d t$ unknown to NLO
- Longitudinal momentum diffusion \hat{q}_{L} unknown to NLO
- Transverse momentum diffusion \hat{q}, known to LO and NLO
- Fluctuation-dissipation $\hat{q}_{L}=2 T d E / d t$

Longifudinal momentum diffusion

- Field-theoretical lightcone definition

$$
\hat{q}_{L} \equiv \frac{g^{2}}{d_{R}} \int_{-\infty}^{+\infty} d x^{+} \operatorname{Tr}\left\langle U\left(-\infty, x^{+}\right) F^{+-}\left(x^{+}\right) U\left(x^{+}, 0\right) F^{+-}(0) U(0,-\infty)\right\rangle
$$

$F^{+-}=E^{z}$, longitudinal Lorentz force correlator

- At leading order

$$
\begin{aligned}
\hat{q}_{L} & \propto \int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}}\left(q^{+}\right)^{2} G_{++}^{>}\left(q^{+}, q_{\perp}, 0\right) \\
& =\int \frac{d q^{+} d^{2} q_{\perp}}{(2 \pi)^{3}} T q^{+}\left(G_{++}^{R}\left(q^{+}, q_{\perp}, 0\right)-G^{A}\right)
\end{aligned}
$$

- Not dominated by zero-mode, but by arcs

$$
\hat{q}_{L} \propto \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{T m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}}
$$

Longifudinal momentum diffusion

- At NLO

- Unsurprisingly

$$
\hat{q}_{L} \propto \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \frac{T\left(m_{\infty}^{2}+\delta m_{\infty}^{2}\right)}{q_{\perp}^{2}+m_{\infty}^{2}+\delta m_{\infty}^{2}}=T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left[\frac{m_{\infty}^{2}}{q_{\perp}^{2}+m_{\infty}^{2}}+\frac{\delta m_{\infty}^{2} q_{\perp}^{2}}{\left(q_{\perp}^{2}+m_{\infty}^{2}\right)^{2}}\right]
$$

- Implementation of these results in MARTINI is underway

Conclusions

- The NLO contributio factorization semicollinear / soft los
- These four terms com contributions that lar correction. Is the cancellation accidental? At $\alpha_{\mathrm{s}}=0.3$ the NLO is initially positive, then turns negative and keeps growing at large k / T. At small $\alpha_{\mathrm{s}}\left(\alpha_{\mathrm{s}}=0.05\right)$ the correction is always negative
- In the phenomenologically interesting window up to the NLO correction is $10 \%-20 \%$ for $\alpha \mathrm{s}=0.3$

Conclusions

- Apparently complicated dynamical quantities factor into simpler light-cone condensates or operators, which are basically of two kinds
- Energy-dependent: thermal masses
- Energy-independent: correlators of the 3D theory
- Application to jet evolution and low invariant-mass dileptons underway. Transport coefficients are harder, but stay tuned

