Top mass extraction from leptonic distributions in dilepton final states

Alexander Mitov

Cavendish Laboratory

UNIVERSITY OF CAMBRIDGE

Work in progress with:

Stefano Frixione and Rikkert Frederix

Why bring this problem?

- ✓ Top mass is now known with 1GeV accuracy. <u>Question</u>: could there be a hidden systematics which is as large as, say, 1 GeV?
- ✓ <u>The rationale</u>: the top mass is not observable and thus cannot me "measured"
- ✓ It can be inferred from data based on some theory input. So if the theory input is incomplete the extracted mass is imperfect (even for a perfect measurement)

Where does M_{TOP} matter?

- \checkmark 1 GeV uncertainty is plenty in collider physics (W mass is bottleneck in EW precision fits)
- \checkmark Fate of the Universe is different story: 1 GeV change in M_{TOP} makes all the difference
- ✓ Interesting QCD question: how do we determine the top mass?

How to determine M_{TOP}?

- ✓ Many approaches exist
- \checkmark The most natural way is:
 - \checkmark take an observable O(M)
 - ✓ compute it
 - ✓ measure it
 - ✓ extract M

Top mass determination from dileptons

See 2013 review by:

Aurelio Juste, Sonny Mantry, Alexander Mitov, Alexander Penin, Peter Skands, Erich Varnes, Marcel Vos, Stephen Wimpenny Which observable to use?

- ✓ Idea: use dilepton events. Why?
 - > Most past top determinations rely heavily on MC's.
 - > Dilepton events allow us to be less-dependent on modeling of hadronic activity.
 - > The observable is:
 - inclusive
 - well-defined to all orders, etc
- ✓ Definition:
 - \checkmark events containing 2 leptons and 2 b-quarks
 - \checkmark do not care about the kinematics of b's; only require them inside of detector
 - \checkmark study kinematical distributions constructed ONLY from the 2 leptons
 - ✓ Implications:
 - We are fully inclusive in all radiation beyond the 2 b's
 - We are rather inclusive in the two b's: we integrate them over the detector.

Calculational tool of choice: aMC@NLO

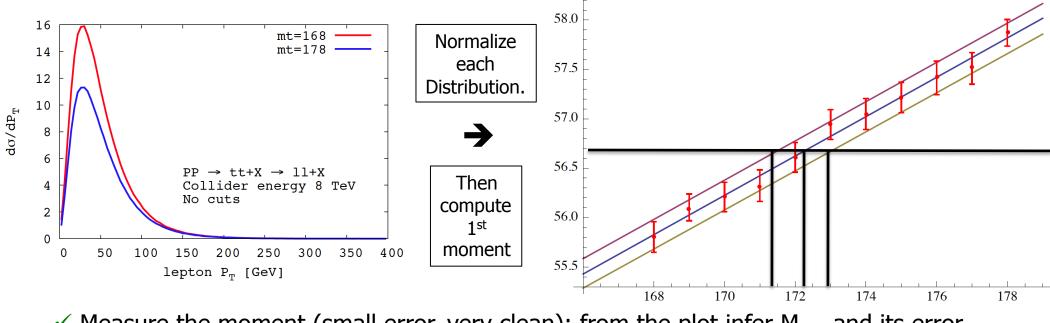
 \checkmark <u>The logic is</u>: the observable is inclusive.

 \checkmark Implication: could be computed at fixed order.

 \checkmark We want to verify this: showered calculation needed.

aMC@NLO offers it all!

What are the drawbacks of such an approach (i.e. m_{top} from dilepton distributions)?


> Only one known: could the sensitivity of the distributions to M_{TOP} be small?

I mentioned dilepton distributions. Here is what we consider (must be dimension-full)

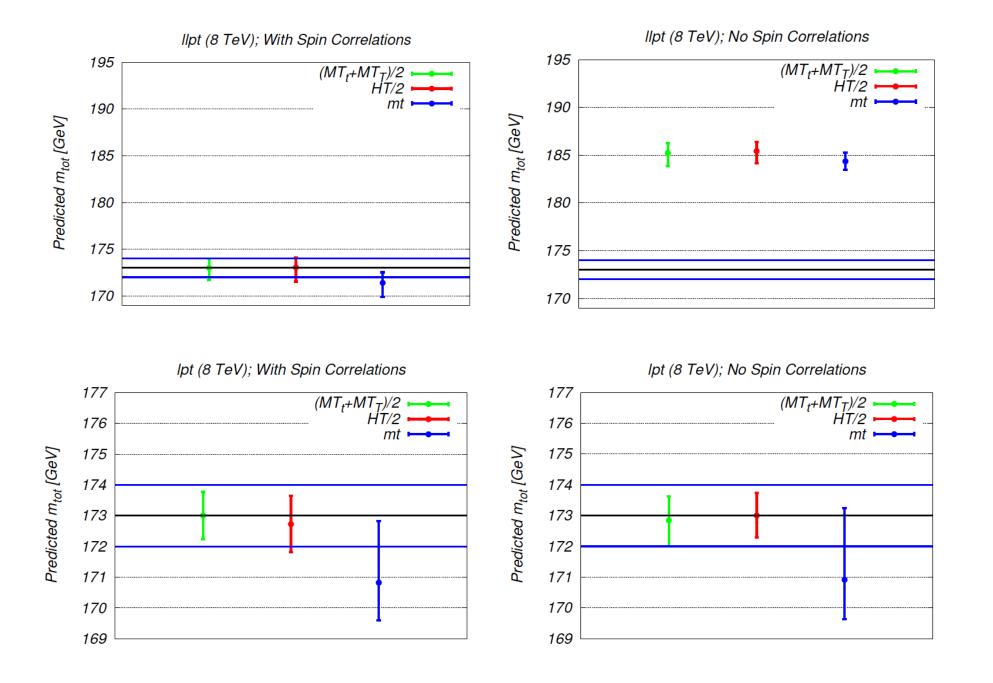
- 1) Lepton p_T
- 2) Lepton pair p_T
- 3) Lepton pair invariant mass
- 4) Sum of the energies of the two leptons (considered '10 by Biswas, Melnikov, Schulze)
- 5) $P_{T1} + P_{T2}$ (scalar sum)

Plan for work:

- ✓ Compute:
 - NLO + shower with/out spin correlations (MadSpin)
 - full off-shell NLO fixed order (done; will not show)
 - LO (done; will not show)
 - 3 different functional forms for mu_R , mu_F
 - MSTW pdf sets (at NLO or LO and for pdf variation)
 - scale variation: independent mu_R and mu_F restricted variation
 - compute for: no cuts, cuts (standard CMS), cuts + isolation
- ✓ Extract the 1-st moment of the distributions (as subject to cuts etc; per-event)
- \checkmark Compute PDF/scale uncertainty for the moment
- ✓ From 11 masses in (168,178) find the fits for (central, +err, -err)

 \checkmark Measure the moment (small error, very clean); from the plot infer M_{TOP} and its error.

> 8 TeV is not worse (maybe even better) than 14 TeV


> Vary: choice of scale

- fixed scale: $mu = M_{TOP}$ - dynamic scale: $mu = H_T/2$, $(M_{T,t} + M_{T,T})/2$
- Vary: MadSpin: included or not

How to assess the results and interpret them?

- > Assume a value for the moment (eventually, the measured value, which is unique) Take a value which returns $M_{TOP} = 173$ (for the "best" prediction)
- \succ For each one of the 5 distributions invert mu to derive M_{TOP}
- > Compare the inferred masses, together with the uncertainties.
- > Interpret the results: do they agree? Or not? Why? etc.

Extracted top mass for some **assumed** measurement with m_{top}=173 GeV: (preliminary)

Concluding comments (preliminary)

✓ Spin correlations:

- \checkmark hugely important for pair P_T and pair invariant mass
- \checkmark unimportant for single lepton P_T , sum of P_T and sum of energies

✓ We have considered 5 observables. Are there more? Should we consider likelihood?

- \checkmark <u>A concern</u>: splitting observables might be good for seeing effects (previous slide).
- ✓ Choice of scale makes some difference (dynamic vs. fixed) but all is within uncertainties
- ✓ Sub-1 GeV m_{top} extraction possible (TH error only):

Single lepton P_T Sum of lepton P_T 's Sum of lepton energie	: $\Delta m_{top} = \pm 0.8 \text{ GeV}$: $\Delta m_{top} = \pm 0.8 \text{ GeV}$ es: $\Delta m_{top} = \pm 2.0 \text{ GeV}$	 Insensitive to spin correlations
Lepton pair P_T Pair inv. mass	: $\Delta m_{top} = \pm 1.1 \text{ GeV}$: $\Delta m_{top} = \pm 1.6 \text{ GeV}$	\leftarrow Very sensitive to spin correlations