

Combination of 7TeV tt charge asymmetry results First steps

Thorsten Chwalek, Frederic Deliot

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie

CHARGE SYMMETRY MS TLAS COMBINATION

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Published and preliminary results @7TeV

Lepton+jets

ATLAS (4.7fb⁻¹) arXiv:1311.6724 (sub. to JHEP)
A_c = 0.006 ±0.010 (stat. + syst.)

CMS (5.0fb⁻¹) Phys. Lett. B 7171 (2012) 129 A_c = 0.004 ±0.010 (stat.) ±0.011(syst.)

Theory prediction (Kühn, Rodrigo) $A_c = 0.0115 \pm 0.006$

Dilepton

- ATLAS (4.7fb⁻¹) ATLAS-CONF-2012-057 A_c = 0.057 ±0.024 (stat.) ±0.015 (syst.)
- CMS (5.0fb⁻¹) TOP-12-010

 $A_c = 0.050 \pm 0.043 \text{ (stat.)} + 0.010 - 0.039 \text{ (syst.)}$

A paper is currently in internal review with a different method yielding a different result

Published and preliminary results @7TeV

Lepton+jets
■ ATLAS (4.7fb⁻¹) arXiv:1311.6724 (sub. to JHEP) A_c = 0.006 ±0.010 (stat. + syst.)

M

CMS (5.0fb⁻¹) Phys. Lett. B 7171 (2012) 129 A₀ = 0.004 ±0.010 (stat.) ±0.011(syst.)

Start with the combination of **lepton+jets** results

Theory prediction (Kühn, Rodrigo) $A_c = 0.0115 \pm 0.006$

Dilepton

ATLAS (4.7fb⁻¹) ATLAS-CONF-2012-057 A_c = 0.057 ±0.024 (stat.) ±0.015 (syst.)

CMS (5.0fb⁻¹) TOP-12-010

 $A_c = 0.050 \pm 0.043 \text{ (stat.)} + 0.010 - 0.039 \text{ (syst.)}$

A paper is currently in internal review with a different method yielding a different result

Lepton+jets results @7TeV

top

anti-top

LHC

- $A_c = 0.006 \pm 0.010$ (stat.+syst.)
- $A_c = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$
- Both analyses use the same sensitive variable
- Central values are very close
- Both comparable within the uncertainties with ...
 - ...the SM predictions
 - ...zero asymmetry
- In addition: both analyses measure A_c differentially
 - ...but with different binnings
 - Focus on inclusive results for the combination

ATLAS NOTE

ATLAS-CONF-2013-078

July 18, 2013

Measurement of the top quark pair production charge asymmetry in proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector

The ATLAS Collaboration

Abstract the top quark p

where the set of th

② Copyright 2013 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 licensi

rised		
CLE INFO	ABSTRACT	
91 Jaco 2012 revised form 30 August 2012 (Soptember 2012 skan 17 September 2012 Josef	The ti charge asymmetry is measured in events containing a ch at heart loss jets, one of which is identified as originating from diarat corresponds to an integrated leminosity of 50 fb ⁻¹ calcula- An inclusive and three differential measurements of the ti spiner are charge asymmetry in $A_{ee} = 0.604 \pm 0.010$ (state) and 10 ± 0.011 (syst).	

ntroduction

be top space to determine a neucline representative to search for $d_{\rm eff}$. The energy of the search of the s

a procession on the parts at seeing street (LD) (B yHHReff): a procession of the parts at seeing street (LD) (B yHHReff): so there are asymmetry in the differential distributions of ands: and antipacts. The interference between initial-state linal-state radiation (UR and PSR) processes as well as the encode between the line and also diagrams generate a comsense between the lines and how diagrams generate a comtensive field of the line of the discovery of the line is indiced by the line of the discovery of the line of the interms is related to the of the incension of the top-antipact terms is related to the of the incension gamingan (LL). While

cision is $A_c^{\rm Distry} = 0.0115 \pm 0.0006$ [5]. Recently, the Compact Nuon Solenaid (CMS) and ATLAS Colneations have published first measurements of the charge

Inclusive lepton+jets results @7TeV

 $A_{c} = 0.006 \pm 0.010 \text{ (stat.+syst.)}$

 $A_c = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

- Main difference: size of the uncertainties
- Stat. uncertainty is ~0.010 in both analyses
- Syst. uncertainty for ATLAS is much smaller (due to marginalization procedure)

Estimation of systematic uncertainties

 $A_c = 0.006 \pm 0.010$ (stat.+syst.)

 $A_c = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

- Systematics are taken into account using a **marginalization** procedure
- Posterior distributions for signal and BG corresponding to each syst. variation are computed
- Likelihood used in the unfolding is marginalized by integrating out its dependence on the nuisance parameters
- Priors for all nuisances are Gaussian without correlation between them
- The **resulting posterior** is used to extract the systematic uncertainty

- For each source of systematic uncertainty the measurement on data is repeated
- Instead of the default MC templates the systematically shifted ones are used for BG-estimation, BG-subtraction and unfolding
- The resulting asymmetry is compared to the central result
- The difference is quoted as systematic uncertainty
- The individual contributions are added in quadrature yielding the total systematic uncertainty

Closer look at the individual systematics

 $A_{c} = 0.006 \pm 0.010 \text{ (stat.+syst.)}$

$A_c = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

For illustration only: calculated one-by-one before marginalization

Source of systematic uncertainty		
	Inclusive	
Lepton reconstruction/identification	< 0.001	
Lepton energy scale and resolution	0.003	
Jet energy scale and resolution	0.003	
Missing transverse momentum and pile-up modelling	0.002	
Multijet background normalisation	< 0.001	
b-tagging/mis-tag efficiency	< 0.001	
Signal modelling	< 0.001	
Parton shower/hadronisation	< 0.001	
Monte Carlo statistics	0.002	
PDF	0.001	
W+jets normalisation and shape	0.002	
Statistical uncertainty	0.010	

Systematic uncertainty	Shift (±) in inclusive A_C
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

Closer look at systematics

 $A_c = 0.006 \pm 0.010$ (stat.+syst.)

 $A_c = 0.004 \pm 0.010 \text{ (stat.)} \pm 0.011 \text{ (syst.)}$

- List of considered systematics is almost identical
- CMS has one additional uncertainty on the model dependence of the default signal sample used for the unfolding
 - Largest single uncertainty → drives the total
- ATLAS numbers are only for illustration: for this cross-check the syst. uncertainties are calculated one-by-one before marginalization
 - For the final result, the stat.+syst. uncertainty is estimated using a marginalization procedure
 - Total uncertainty is ~ statistical uncertainty (0.010)
- The different methods to estimate the impact of systematic uncertainties yield different total syst. uncertainties of the final results

Mapping of systematic uncertainties (1)

"Detector-modelling" (correlation: 0)

Source of systematic uncertainty		
	Inclusive	
Lepton reconstruction/identification	< 0.001	
Lepton energy scale and resolution	0.003	
Jet energy scale and resolution	0.003	
Missing transverse momentum and pile-up modelling	0.002	
Multijet background normalisation	< 0.001	
<i>b</i> -tagging/mis-tag efficiency	< 0.001	
Signal modelling	< 0.001	
Parton shower/hadronisation	< 0.001	
Monte Carlo statistics	0.002	
PDF	0.001	
W+jets normalisation and shape	0.002	
Statistical uncertainty	0.010	

Systematic uncertainty	Shift (±) in inclusive A_C
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

We group together systematic uncertainties of related sources by adding them in quadrature

Mapping of systematic uncertainties (2)

"Detector-modelling" (correlation: 0)

0.000

0 002

"Signal-modelling" (correlation: 1)

Source of systematic uncertainty	
	Inclusive
Lepton reconstruction/identification	< 0.001
Lepton energy scale and resolution	0.003
Jet energy scale and resolution	0.003
Missing transverse momentum and pile-up modelling	0.002
Multijet background normalisation	< 0.001
<i>b</i> -tagging/mis-tag efficiency	< 0.001
Signal modelling	< 0.001
Parton shower/hadronisation	< 0.001
Monte Carlo statistics	0.002
PDF	0.001
W+jets normalisation and shape	0.002
Statistical uncertainty	0.010

Systematic uncertainty	Shift (±) in inclusive A_C
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

We group together systematic uncertainties of related sources by adding them in quadrature

Mapping of systematic uncertainties (3)

"Detector-modelling" (correlation: 0)

0.000

0 0 0 2

"Signal-modelling" (correlation: 1)

Source of systematic uncertainty	
	Inclusive
Lepton reconstruction/identification	< 0.001
Lepton energy scale and resolution	0.003
Jet energy scale and resolution	0.003
Missing transverse momentum and pile-up modelling	0.002
Multijet background normalisation	< 0.001
b-tagging/mis-tag efficiency	< 0.001
Signal modelling	< 0.001
Parton shower/hadronisation	< 0.001
Monte Carlo statistics	0.002
PDF	0.001
W+jets normalisation and shape	0.002
Statistical uncertainty	0.010

JES 0.003 JER 0.002 Lepton ID/sel. efficiency 0.006 Generator 0.001 Hadronization 0.001 Q^2 scale 0.002 PDF 0.002 Pileup < 0.001 W + jets 0.004 Multijet 0.002 Model dependence 0.007 Total 0.011	_	Systematic uncertainty	Shift (\pm) in inclusive A_C
JER 0.002 Lepton ID/sel. efficiency 0.006 Generator 0.001 Hadronization 0.001 Q^2 scale 0.002 PDF 0.002 Pileup < 0.001 W + jets 0.004 Multijet 0.002 Model dependence 0.007 Total 0.011		JES	0.003
Lepton ID/sel. efficiency 0.006 Generator 0.001 Hadronization 0.001 Q^2 scale 0.002 PDF 0.002 Pileup < 0.001 W + jets 0.004 Multijet 0.002 Model dependence 0.007 Total 0.011		JER	0.002
Generator 0.001 Hadronization 0.001 Q^2 scale 0.002 PDF 0.002 Pileup < 0.001		Lepton ID/sel. efficiency	0.006
Hadronization 0.001 Q^2 scale 0.002 PDF 0.002 Pileup < 0.001 $W +$ jets 0.004 Multijet 0.001 Migration matrix 0.002 Model dependence 0.007 Total 0.011		Generator	0.001
Q^2 scale 0.002 PDF 0.002 Pileup < 0.001		Hadronization	0.001
PDF 0.002 Pileup < 0.001		Q ² scale	0.002
Pileup< 0.001W + jets0.004Multijet0.001Migration matrix0.002Model dependence0.007Total0.011		PDF	0.002
W + jets0.004Multijet0.001Migration matrix0.002Model dependence0.007Total0.011		Pileup	< 0.001
Multijet0.001Migration matrix0.002Model dependence0.007Total0.011		W + jets	0.004
Migration matrix0.002Model dependence0.007Total0.011		Multijet	0.001
Model dependence0.007Total0.011		Migration matrix	0.002
Total 0.011		Model dependence	0.007
	-	Total	0.011

"Modelling of W+jets" (correlation: 1) $\frac{0.002}{0.004}$

Mapping of systematic uncertainties (4)

"Detector-modelling" (correlation: 0)

0.000

0 0 0 2

"Signal-modelling" (correlation: 1)

Source of systematic uncertainty		
Lepton reconstruction/identification		
Lepton energy scale and resolution		
Jet energy scale and resolution		

	Inclusive
Lepton reconstruction/identification	< 0.001
Lepton energy scale and resolution	0.003
Jet energy scale and resolution	0.003
Missing transverse momentum and pile-up modelling	0.002
Multijet background normalisation	< 0.001
<i>b</i> -tagging/mis-tag efficiency	< 0.001
Signal modelling	< 0.001
Parton shower/hadronisation	< 0.001
Monte Carlo statistics	0.002
PDF	0.001
W+jets normalisation and shape	0.002
Statistical uncertainty	0.010

Systematic uncertainty	Shift (±) in inclusive A_C
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

"Modelling of W+jets" (correlation: 1)

Mapping of systematic uncertainties (5)

"Detector-modelling" (correlation: 0)

0.000

0.002

"Signal-modelling" (correlation: 1)

Source of systematic uncertainty

	Inclusive
Lepton reconstruction/identification	< 0.001
Lepton energy scale and resolution	0.003
Jet energy scale and resolution	0.003
Missing transverse momentum and pile-up modelling	0.002
Multijet background normalisation	< 0.001
<i>b</i> -tagging/mis-tag efficiency	< 0.001
Signal modelling	< 0.001
Parton shower/hadronisation	< 0.001
Monte Carlo statistics	0.002
PDF	0.001
W+jets normalisation and shape	0.002
Statistical uncertainty	0.010

"Pileup" (correlation: 0)

"PDF" (correlation: 1)

0.001

0.002

Systematic uncertainty	Shift (\pm) in inclusive A_0
JES	0.003
JER	0.002
Lepton ID/sel. efficiency	0.006
Generator	0.001
Hadronization	0.001
Q ² scale	0.002
PDF	0.002
Pileup	< 0.001
W + jets	0.004
Multijet	0.001
Migration matrix	0.002
Model dependence	0.007
Total	0.011

Mapping of systematic uncertainties (6)

"Detector-modelling" (correlation: 0)

0.000

0 0 0 2

"Signal-modelling" (correlation: 1)

Inclusive
< 0.001
0.003
0.003
0.002
< 0.001
< 0.001
< 0.001
< 0.001
0.002
0.001
0.002
0.010

_	Systematic uncertainty	Shift (±) in inclusive A_C
ſ	JES	0.003
	JER	0.002
	Lepton ID/sel. efficiency	0.006
ſ	Generator	0.001
I	Hadronization	0.001
	Q ² scale	0.002
	PDF	0.002
	Pileup	< 0.001
	W + jets	0.004
_	Multijet	0.001
	Migration matrix	0.002
	Model dependence	0.007
_	Total	0.011

"MC statistics of the migration matrix" (correlation: 0)

Systematic	ATLAS	CMS	Correlation
Detector modelling	0.004	0.007	0
Signal modelling	0.000	0.002	1
W+jets	0.002	0.004	1
QCD	0.000	0.001	0
Pileup	0.002	0.000	0
PDF	0.001	0.002	1
MC stats pf Migmatrix	0.002	0.002	0
Model dependence		0.007	

Conclusion and outlook

- Identified corresponding systematics in ATLAS and CMS
 - But: mapping of systematics shown in this presentation mainly for illustration purpose
 - ATLAS uses marginalization procedure
 - Have to define a strategy of how to treat these uncertainties
- Next step:
 - Combination of the lepton+jets results
 - ...using the BLUE method
 - …considering ATLAS' marginalization procedure
 - Add dilepton results

BACKUP

CMS: Model dependence systematic

- Reweight events to produce asymmetry depending on the secondary variable
- The errors of the unfolding procedure give an estimate of the unfolding reliability in scenarios deviating significantly from Powheg simulation

]	Reweigh	ted in m	ŧ	
	$m_{t\bar{t}}$ bin 1		m _{tī} bin 2		$m_{\rm ff}$ bin 3	
Scenario	A_C^{gen}	A_C^{meas}	A _C ^{gen}	ACmeas	A_C^{gen}	A _C ^{meas}
A	0.013	0.010	0.040	0.038	0.101	0.104
В	-0.003	0.000	-0.026	-0.024	-0.081	-0.083
С	-0.012	-0.016	-0.002	-0.004	0.047	0.051
D	0.022	0.026	0.015	0.017	-0.027	-0.030
E	0.008	0.003	0.034	0.037	0.112	0.113
	Reweighted in p _{Ltī}					11
$m_{\rm tf}$ bin 1		oin 1	m _{tī} l	oin 2	m _{ff} bin 3	
Scenario	A_C^{gen}	A_C^{meas}	A_C^{gen}	Areas	AC	A _C meas
A	0.031	0.031	0.050	0.053	0.071	0.088
В	-0.021	-0.021	-0.037	-0.039	-0.051	-0.067
С	0.005	0.005	0.009	0.012	0.017	0.035
D	0.005	0.006	0.005	0.002	0.003	-0.014
E	0.030	0.030	0.049	0.053	0.070	0.090
/	\sim) F	Reweight	ed in yt		
$m_{\rm tf}$ bin 1		mtil	oin 2	$m_{\rm ff}$ bin 3		
Scenario	Agen	Ameas	Ac	Areas	A_C^{gen}	A _C meas
A	0.040	0.036	0.065	0.059	0.085	0.081
B	-0.030	-0.027	-0.051	-0.046	-0.065	-0.060
C \	0.014	0.011	0.023	0.018	0.031	0.028
D	-0.004	0.000	-0.010	-0.005	-0.011	-0.007
E	0.041	0.037	0.067	0.063	0.090	0.088

ATLAS: uses axigluon models to reweight the partonic asymmetry from MC@NLO (not linear nor quadratic, but coming from a physics model) \rightarrow no bias in the linearity check (For the 1fb⁻¹ paper several physics models have been used \rightarrow also no bias in the linearity check