Review of ATLAS & CMS top-quark pair differential cross sections

María Aldaya (CMS, University of Hamburg) Francesco Spanò (ATLAS, Royal Holloway University of London)

for the ATLAS & CMS top-quark pair differential cross section groups

TOPLHCWG Meeting, CERN, 28 November 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

- **Introduction**
- **Description of analyses**
	- Event selection
	- Kinematic reconstruction
	- Unfolding
- Measurements:
	- ATLAS (l+jets) @ 7 TeV: **ATLAS-CONF-2013-099**
	- CMS (l+jets, dileptons) @ 7 TeV: **Eur. Phys. J. C73 (2013) 2339**
	- CMS (l+jets, dileptons) @ 8 TeV: **CMS-PAS TOP-12-027, CMS-PAS-TOP-12-028**
- First studies at generator level on definition of top quark

 $SV_s = 22.9$

 μ _T+ χ

Why measure differentially?

- Precise understanding of top quark distributions is crucial:
	- Precise tests of pQCD for top quark production in different regions of the phase space
	- Theory predictions and models need to be tuned and tested with measurements
	- Extract/use for PDF fits
	- Enhance sensitivity to New Physics
	- Background for Higgs, rare processes and many BSM searches

 \blacksquare LHC 2010 – 2012: 7 TeV: \sim 1 M tt pairs

8 TeV: \sim 5.5 M tt pairs (each ATLAS & CMS)

Entered the era of precision measurements in top-quark-pair production

General analysis strategy

Measure σ(tt) as a function of kinematic distributions of **top, top pairs, b-jets, leptons, and lepton pairs**

Event selection

Lepton+jets:

- Exactly 1 isolated high- p_T lepton (μ or e)
	- CMS: $p_T > 30$ GeV, $|n| < 2.1$
	- ATLAS: $p_T > 25$ GeV, $|\eta| < 2.5$
- Veto additional leptons
- \geq 4 high-p_T jets, \geq 2 b-tagged jets
	- CMS: $p_T > 30$ GeV, $|\eta| < 2.4$
	- ATLAS: $p_T > 25$ GeV, $|\eta| < 2.5$
- Additionally: ATLAS: $E_T^{miss} > 30$ GeV, $m_T^{W} > 35$ GeV

Kinematic reconstruction of the $t\bar{t}$ system

Dileptons:

- 2 opp.-sign, high- p_T isolated leptons (ee, $\mu\mu$, μ e)
	- $p_T > 20$ GeV, $|n| < 2.4$
- QCD veto: m_{II} < 20 GeV (12 GeV for 7 TeV)
- \geq 2 jets (p_T > 30 GeV, |n| < 2.4), \geq 1 b-tagged jets
- ee , $\mu\mu$ channels: $E_T^{miss} > 40$ GeV (30 GeV for 7 TeV), $|m_{\parallel} - m_{z}| > 15$ GeV

Kinematic reconstruction of the tt system

Kinematic distributions – ℓ **+jets** (7 TeV, 5 bf-1)

- \blacksquare Pure tt samples after event selection:
	- \sim 80% tt
- **Main backgrounds:** $W+jets(*), \overline{t}$ (dilep), single top, multijet(*)

(*) data-driven normalisation

(*) data-driven normalisation
 $\frac{5}{9}$ $\frac{1.5}{1}$

Reference tt prediction: $\frac{5}{9}$

Reference tt prediction: $\frac{5}{9}$

Alpgen+Herwig

Hadronic top: slope observed in data for $p_T > 200$ GeV

Kinematic distributions – dileptons (7 TeV, 5 fb-1)

CMS, 5.0 fb⁻¹ at \sqrt{s} = 7 TeV CMS, 5.0 fb⁻¹ at \sqrt{s} = 7 TeV $2.5 \frac{\times 10^3}{10}$ $10⁵$ \blacksquare Pure tt samples after Events $/0.2$ **Dilepton Combined** Data **Dilepton Combined** \bullet Data tt Signal I tt Signal event selection: tt Other \mathbf{F} tt Other op-quark pairs $10⁴$ Single Top **y(tt)** Single Top W+Jets | W+Jets
| Z / γ * → ee/μμ៑ \sim 80% tt $Z/\gamma^* \rightarrow ee/ \mu \mu$ $Z/\gamma^* \rightarrow \tau \tau$ $Z/\gamma^* \rightarrow \tau \tau$ $10³$ Diboson

QCD Multijet
 N(bjets) Diboson Diboson 1.5 $\overline{}$ QCD Multijet **Main backgrounds:** $10²$ tt(other), single top, $Z + jets$ (\rightarrow data-driven) 10 0.5 $\mathbf 0$ $\overline{2}$ 3 $\overline{4}$ 6 -1 5 \blacksquare Reference ttr prediction: N_{b-jets} **y**^{tt} CMS, 5.0 fb⁻¹ at \sqrt{s} = 7 TeV CMS, 5.0 fb⁻¹ at \sqrt{s} = 7 TeV MadGraph+Pythia 3×10^3 Top-quark pairs / 10 GeV **Dilepton Combined** Data **Neh nz** \bullet Data It Signal
It Other
Single Top **Dilepton Combined** 4.5 I tt Signal 2.5 tt Other $p_T(tt)$ p_T (top) Single Top $W + \overline{J}$ ets quarks/ $W + Jets$ $Z/\gamma^* \rightarrow ee/uu$ $Z/\gamma^* \rightarrow ee/ \mu \bar{\mu}$ 3.5 $Z/\gamma^* \rightarrow \tau \tau$ $Z/\gamma^* \rightarrow \tau \tau$ \Box Diboson Top p_T spectrum tends to \Box Diboson QCD Multijet -QCD Multijet 1.5 $\overline{8}$ lower p_T values in data 2.5 than in simulation 2 1.5 $\frac{1}{2}$ 0.5 0.5 $0\overline{5}$ 50 100 150 200 250 300 200 300 350 400 50 100 150 250 $p^{t\bar{t}}$ [GeV] p^t [GeV]

M. Aldaya 8 **TOPLHCWG, 28.11.13**

Results: ATLAS & CMS (7 TeV, l**+jets) – y(tt)**

■ CMS: Comparison to MadGraph+Pythia, MC@NLO+Herwig, POWHEG+Pythia, POWHEG+Herwig

ATLAS: Comparison to ALPGEN+Herwig. MC@NLO+Herwig, POWHEG+Herwig

- Similar behaviour for dileptons, both at 7 and 8 TeV
- **M. Aldaya TOPLHCWG, 28.11.13**

show similar behaviour

Results: ATLAS & CMS (7 TeV, l**+jets) – y(tt)**

First attempt at direct data comparison: data/NLO prediction (MCFM)

General good agreement between ATLAS & CMS results, within uncertainties

Results: ATLAS & CMS (7 TeV, ℓ **+jets) –** $p_T(t\bar{t})$ $\mathbf{\bar{t}}$

■ CMS: Comparison to MadGraph+Pythia, MC@NLO+Herwig, POWHEG+Pythia, POWHEG+Herwig

ATLAS: Comparison to ALPGEN+Herwig. MC@NLO+Herwig, POWHEG+Herwig

- General good agreement between data & simulation, both for ATLAS & CMS
- CMS: Similar behaviour for dileptons, both at 7 and 8 TeV

Results: ATLAS & CMS (7 TeV, ℓ **+jets) –** $p_T(t\bar{t})$ $\mathbf{\bar{t}}$

First attempt at direct data comparison: data/NLO prediction (MCFM)

Results: ATLAS & CMS (7 TeV, l**+jets) – m(tt)**

First attempt at direct data comparison: data/NLO prediction (MCFM)

Results: ATLAS & CMS (7 TeV, ℓ **+jets) – p_T(top)**

First attempt at direct data comparison: data/NLO prediction (MCFM)

 $p_T(top) < 200$ GeV:

- Disagreement between ATLAS & CMS data
- ATLAS result in agreement with MCFM

$p_T(top) > 200$ GeV:

- Good agreement between ATLAS & CMS data
- ATLAS & CMS in disagreement with MCFM

TOPLHCWG meeting

Ttbar differential cross-section

M. Aldaya Martin, L. Bellagamba, M. Goerner, F. Spano' for the differential cross-section analysis group from ATLAS and CMS

17/10/2013

- The idea is to define an efficient process in order to compare the respective measurements and understand possible differences in procedures and/or results

- First discussions among analyzers and conveners involved in the analysis started at **TOP2013.**

- The first step was the exchange of a list of questions/clarifications between the two experiments. Starting from such lists, a summary set of relevant items has been produced which could represent a draft agenda for a next close meeting between the respective analyzer teams.

Comparison based on 7 TeV results in I+jets for $p_T(top)$ **, m(tt),** $p_T(\overline{t}t)$ **, y(tt)**

ATLAS & CMS to-do list (I)

Definition of the top quark: "top quark at parton level after QCD radiation"

- Which is exactly the top parton used for the unfolding?
- Check for possible differences between Pythia and Herwig

MC samples and theory predictions (NLO+PS, multi-leg tree-level+PS, MCFM, NLO +NNLL, approx. NNLO):

- Exchange parameters and tunes used for the signal MC samples
- For each signal MC sample used provide a tree with generator-level information to exchange with the other experiment
- For the multi-leg tree-level signal MC check possible differences in the treatment of topologies with large numbers of extra partons.
- Check if the NLO+NNLL and approx. NNLO predictions are treated consistently in both experiments

Selection & Analysis + background uncertainties:

- Check consistency in purity and efficiency definition: in particular is tau+jets considered as signal or background?
- Provide detailed efficiency tables separated for electron and muon channels.
- Exchange details on the treatment of uncertainties, in particular the background shape uncertainties

ATLAS & CMS to-do list (II)

Unfolding: exchange details of the procedure

- Are corrections (migrations at reco level and correction from reco to parton level) performed in one step?
- Exchange response matrices
- How is the regularisation performed?
- How large is the extrapolation to the full phase space?

Results:

- Provide detailed systematic tables for the different spectra and channels in order to compare the impact of the different sources of systematic uncertainties.
- Provide ratio plots for a direct data/prediction comparison both for reco and unfolded level results.

Suggestions for further checks are welcome !

First study:

- Check definition of *top parton after QCD radiation and before decay*

- Consistency of the MC samples at generator level used in the ATLAS & CMS differential cross section analyses

MC tt samples: parameters & tunes (7 TeV)

ATLAS

Default samples

• Additional Powheg+Herwig sample: NLO PDF CT10, AUET2 Herwig 6.5 tune

CMS

• Additional Powheg+Herwig sample: NLO PDF CTEQ6M, AUET2 Herwig 6 tune

All CMS samples overview: p_T(top)

■ Ratio wrt CMS Powheg+Pythia

- **-** Low p_T region mostly similar
- Some differences for $p_T > 300$ GeV between **Pythia** (green, red) and **Herwig** (pink, blue)
- Different behaviour of Powheg+Herwig, especially for $p_T < 100$ GeV
- Powheg+Herwig provides reasonable description of the data both for ATLAS and CMS
- **Similar** behaviour in **ATLAS & CMS**

PYTHIA-SHOWERED samples vs. HERWIG-SHOWERED samples

Consistent top quark definition in HERWIG- & PYTHIA-showered samples btw ATLAS & CMS:

- events produced with the same generator and parton shower/hadronization scheme are compatible within the statistical uncertainty of the samples
- **Powheg+Herwig**: different shape over the whole p_T spectrum, both for ATLAS & CMS

PYTHIA-SHOWERED samples vs. HERWIG-SHOWERED samples

Consistent top quark definition in HERWIG- & PYTHIA-showered samples btw ATLAS & CMS:

- events produced with the same generator and parton shower/hadronization scheme are compatible within the statistical uncertainty of the samples
- MadGraph+Pythia (Alpgen+Herwig) more central than other Pythia- (Herwig-) showered samples

POWHEG SAMPLES: Pythia vs. Herwig

■ Ratio wrt CMS Powheg+Herwig

Given a generator, **the relative differences between PYTHIA & HERWIG** are observed by both experiments with sizes that **are consistent** within the statistical uncertainties of the samples

Powheg+Herwig: different shape over the whole p_T spectrum, both for ATLAS & CMS

Summary & outlook

- **ATLAS & CMS tt differential cross sections**
	- **Largely consistent with SM predictions**
	- Some tension between ATLAS & CMS at low p_r(top) values
	- **→ Collaboration between both experiments started to understand differences**
- **First comparison between ATLAS & CMS**
	- • **ATLAS and CMS have consistent definition of the top quark (***top parton after radiation***)**
	- • **Compatible behaviour in corresponding sample pairs: same differences between generators and hadronisation schemes**
	- • **Default generators (CMS MadGraph+Pythia, ATLAS Alpgen+Herwig) are similar, consistent within statistical uncertainties**
- **Powheg+Herwig describes** $p_T(top)$ **in data better, both for ATLAS & CMS**
- → Question for theorists/MC experts:

What is the main difference to other generators where the $p_T(top)$ distribution is different ?

- **Next steps in ATLAS & CMS comparison:**
	- **consistency of theory precictions, data/MC comparison, further cross-checks on unfolding, etc**

Additional information

Summary of differential σ**(tt) measurements**

All CMS samples overview: p_T(tt)

■ Ratio wrt CMS Powheg+Pythia

- Compatible ATLAS & CMS behaviour in corresponding sample pairs
- Different behaviour of Powheg+Pythia for $p_T > 200 \text{ GeV}$

Kinematic reconstruction – dileptons

- Underconstrained system (2 neutrinos)
- Constraints:
	- $m_{1v} = m_{W} = 80.4$ GeV
	- $p_{x,y}(v_1) + p_{x,y}(v_2) = E_T^{miss}$ _{x,y}
	- $m_{top} = m_{antitop} = fixed$
- Vary m_{top} in 1 GeV steps: 100 300 GeV
- Take solutions with most b-tagged jets
- Choose solution with best reconstructed neutrino energy with respect to simulated spectrum

Unfolding: correcting for detector effects & acceptances

Binning

Chosen to limit migration effects, quantify with:

• CMS: purity (pⁱ) & stability (sⁱ): ≥ 0.4

$$
p^{i} = \frac{N_{rec\&gen}^{i}}{N_{rec}^{i}} \quad s^{i} = \frac{N_{rec\&gen}^{i}}{N_{gen}^{i}}
$$

• ATLAS: experimental resolution, optimised to minimise uncertainty on final result

Regularisation

• Basic unfolding: simple inversion of response matrix A_{ii} :

$$
N_{i, \text{unf}} = A_{ij}^{-1} N_{j, \text{meas}}
$$

• Regularisation used to remove large statistical fluctuations (SVD)

80 100 120 140 160 180 200 $p'_r \left[\frac{GeV}{C}\right]$

Phase space (PS)

Correct back to **parton** or **particle** level in **full** or **visible** phase space (variable dependent) CMS: also visible PS

MadGraph MC@NLO **POWHEG**

All top and the quantities are corrected to parton level after QCD radiation, in full PS

ATLAS & CMS use different criteria to choose the regularisation parameter

More info: 1/σ **d**σ**/dX @ ATLAS – values (7 TeV)**

- Systematics determined individually for each bin of the measurement
- Normalized cross sections: only shape uncertainties contribute, correlated uncertainties cancel
- Main systematics: JES, signal generator, btagging, ISR/FSR for $p_T(t)$

More info: 1/σ **d**σ**/dX @ CMS – values (7 TeV)**

More info: 1/σ **d**σ**/dX @ CMS – syst (7 TeV)**

- **Determined individually for each bin of the measurement**
- Normalized cross sections: only shape uncertainties contribute, correlated uncertainties cancel

Typical values per bin at 7 TeV

More info: 1/σ **d**σ**/dX @ CMS – phase space**

р

More info: 1/σ **d**σ**/dX @ CMS – unfolding**

response Matrix $A_{ij} := \frac{N_{rec}^{1\rightarrow i}}{N_{gen}^{j}}$

- transition probability from generator bin j to reconstructed bin i, includes efficiency and acceptance

the corrected and **unfolded event** yield x^j is obtained from BG corrected event yield in data N'sig

$$
\sum_{j} A'_{ij} x^{j} = N'_{Sig}
$$

this is equivalent to solve the following χ^2 problem: $\chi^2_A(\vec{x}) := (A\vec{x} - \vec{N}_{Sig})^T \, \mathbf{COV}_{\vec{N}_{Sig}} \left(A\vec{x} - \vec{N}_{Sig} \right)$ (COV: covariance matrix)

regularization is needed to give (non-oszillating) stable results
 \rightarrow add penalty term \rightarrow add penalty term

$$
\chi^2(\vec{x}) := \chi^2_A(\vec{x}) + \tau^2 \cdot \chi^2_L(\vec{x}) \qquad \chi^2_L(\vec{x}) := \sum_{ij} \frac{x^i}{N_{gen}^i} L_{ij}^2 \frac{x^j}{N_{gen}^j} \qquad \text{(curvature matrix)}
$$

too few regularization: large negative correlations (oszillating results) too much regularization: large positive correlations (bias)

 \rightarrow choose **unfolding parameter** τ such that average squared global correlation ρ is minimal:

 $\bar{\rho}(\tau) := \frac{1}{n} \sqrt{\sum_{i} \rho_i(\tau)^2} \qquad \qquad \bar{\rho}_i := \begin{cases} \max_{\alpha_1, \dots, \alpha_n} \rho \sqrt{x^i} \sum_{i \neq i} \alpha_i x^i \end{cases}$

M. Aldaya 39