

The Bias of the Unbiased Estimator

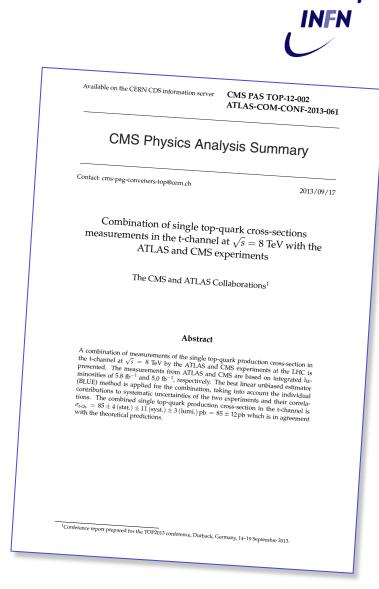
Julien Donini, LPC/Univ. Blaise Pascal - Clermont-Ferrand Luca Lista INFN, Napoli

TOPLHCWG

Sean Rogers1, Flickr-

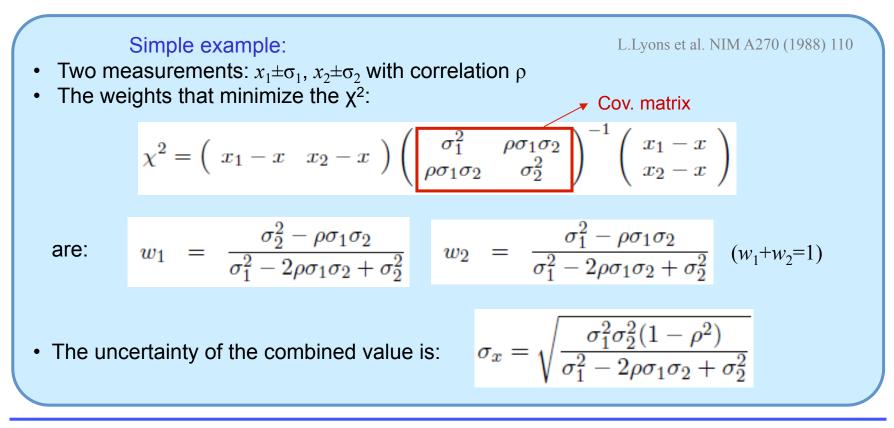
Introduction

- The ATLAS+CMS combination of single-top production cross-section measurements in the t channel was performed using the BLUE (Best Linear Unbiased Estimator)^[*] method, as many other similar combinations
 - [*] L. Lyons et al. NIMA270 (1988) 110
- Compared to its original formulation, relevant contributions to the total uncertainty are known as relative uncertainties
 - Typically: systematic uncertainties
- This spoils the Gaussian assumption of the original formulation and may introduce a bias in BLUE estimate in case of sizable uncertainties (~10% or more)
- The iterative application of the BLUE method was proposed^[**] in the case of a lifetime measurement to reduce such bias
 - [*] L. Lyons et al. PRD41(1990)982985
 - For each iteration, uncertainties known as relative contributions are rescaled to the combined value
- We performed tests to motivate this choice for the single-top combination quantifying the bias in the two cases of the 'plain' vs iterative BLUE implementations



BLUE reminder

- Find linear combination of available measurements: $x = \sum w_i x_i$
 - No bias implies $\sum w_i = 1$
- Choose weights to minimize the variance of estimator
 - Take properly into account correlations between measurements!
- Equivalent to χ^2 minimization or maximum likelihood for Gaussian uncertainties



Iterative BLUE

- Basic idea
 - Consider simple weighted average
 - Errors (σ_i) are supposed to be true errors
 - But what are available are estimated errors ... that may vary with estimated central value (τ_i)
 - Violates 'combination principle': combination of partial combinations differs from combination of all results
- Solution proposed
 - LMS: Locally Matched Solution (we prefer iterative BLUE)
 - Bias reduced if covariance matrix determined as if the central value is the one obtained from combination:
 - Rescale uncertainties to combined value e.g.: if we know a relative uncertainty:

$$\sigma^{\text{rescaled}} = \sigma \cdot x_{\text{blue}} / x_{1}$$

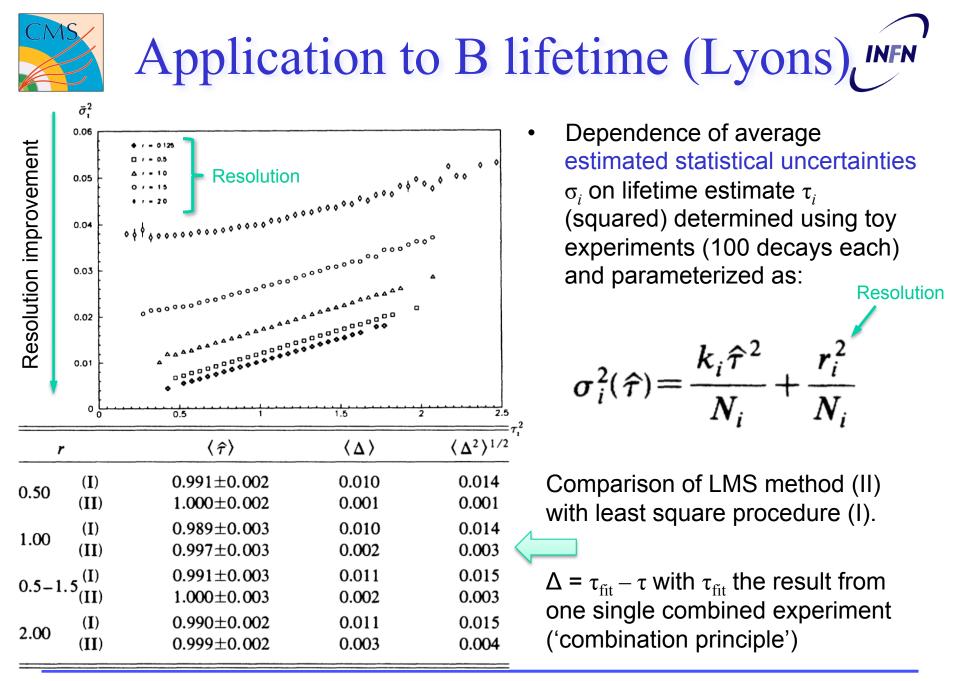
• Iterate until central value converges to stable value

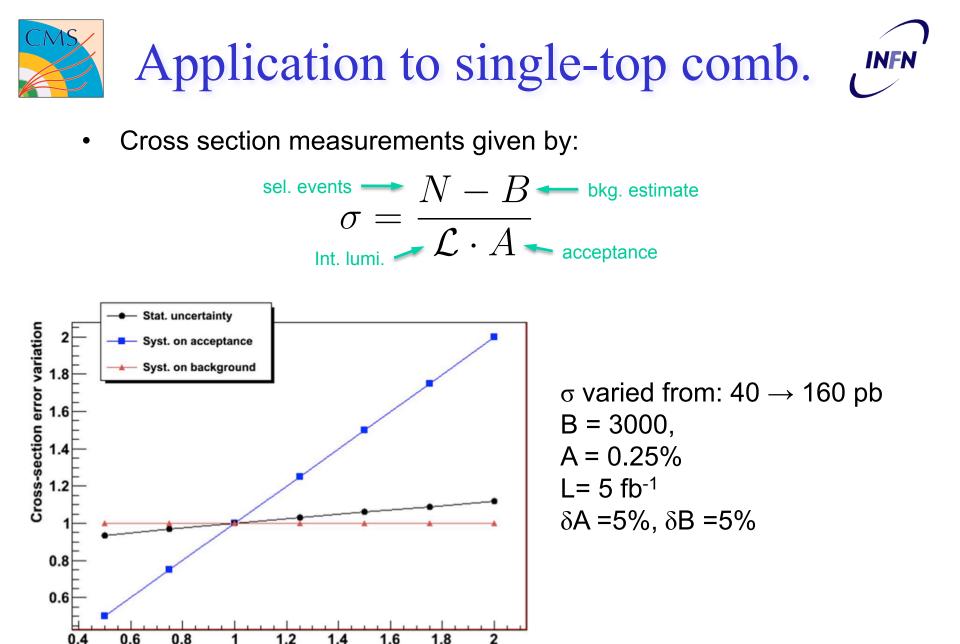
 $\sum N_i / \tau_i^2$

 $\sum \tau_i / \sigma_i^2$

 $\sum 1/\sigma_i^2$

L. Lyons et al., Phys. Rev. D41 (1990) 982985





True cross-section variation

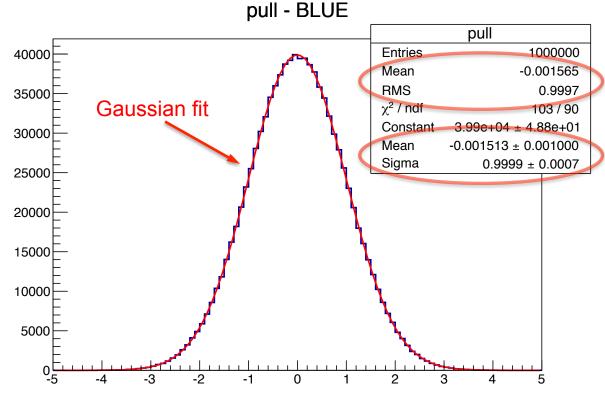
ATLAS+CMS combination

- ATLAS (ATLAS-CONF-2013-098):
 - $\sigma_{\text{t-ch.}} = 95.1 \pm 2.4 \, (\text{stat.}) \pm 18.0 \, (\text{syst.}) \, \text{pb} = 95.1 \pm 18.1 \, \text{pb}$
 - stat: 2.5% (fixed), syst.: 20% (relative uncert.)
- CMS (CMS-PAS-TOP-12-002):
 - $\sigma_{\text{t-ch.}} = 80.1 \pm 5.7 \,(\text{stat.}) \pm 11.0 \,(\text{syst.}) \pm 4.0 \,(\text{lumi.}) \,\text{pb} = 80.1 \pm 13.0 \,\text{pb}$
 - stat: 7.1% (fixed), syst.: 15% (relative uncert.)
- Correlation: $\rho = 0.38$ (total uncert.), $\rho = 0.42$ (syst. only)
- Plain BLUE combination:

 $-\sigma_{t-ch.} = 83.6 \pm 12.1 \text{ pb}$

- Iterative BLUE combination:
 - $-\sigma_{t-ch.} = 85.3 \pm 12.2 \text{ pb}$

- Assuming as true uncertainties ATLAS and CMS estimates, with their correlation
- Generate toys according including correlation and apply BLUE (plain)

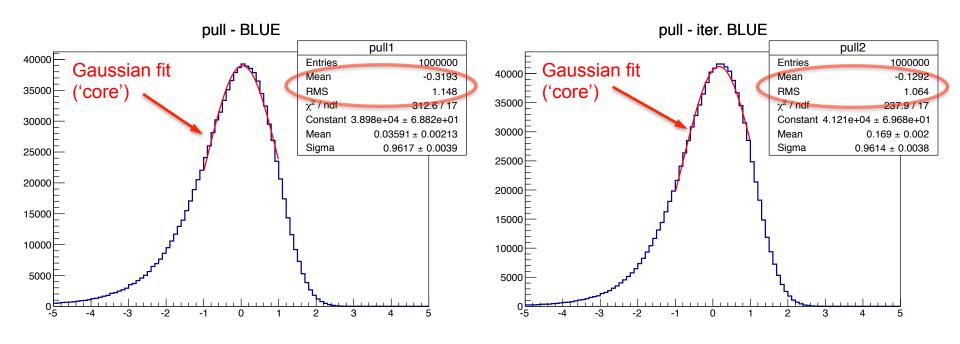


Test with Toy Monte Carlo

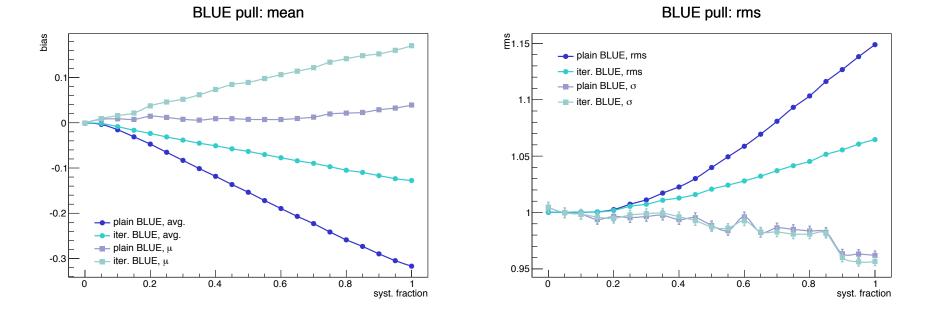
- To assess the possible bias using the two estimators, a simple toy generator was used:
- Assume as true value the combined one: 85 pb
- Assume as true fluctuations the nominal uncertainties of the two experiments with their correlation
 - Nominal uncertainty: stat + syst added in quadrature of each experiment
- Two central values are extracted for ATLAS and CMS according to the know uncertainties, their correlation and the true central value
 - Fixed stat errors, rel. syst errors
- Relative (systematic) uncertainties are rescaled to the extracted central values for ATLAS and CMS

Iterative vs plain BLUE

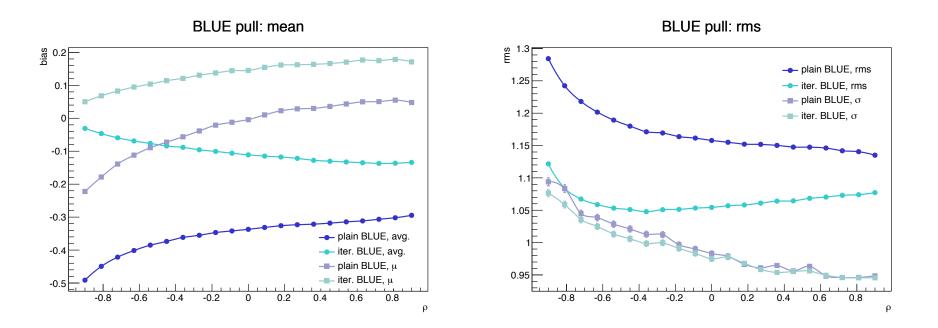
- Bias: $-0.32\sigma \sim 3.9\text{pb}$ (plain) $\rightarrow -0.13\sigma \sim 1.6\text{pb}$ (iterative)
- RMS: 1.15 (plain) \rightarrow 1.06 (iterative): uncertainty underestimate
- Gaussian μ : 0.04 (plain) \rightarrow 0.169 (iterative)
- The iterative BLUE method reduces the bias by shifting the 'core' of the distribution and by shrinking the non-Gaussian tails



- The systematic contribution was varied from the nominal values to zero rescaling it by a fraction *f* going from 0 to 1
- Bias was measured varying the fraction *f* of the actual uncertainty
- As expected, the bias goes to zero as f goes to zero
 - Iterative BLUE is not an issue for precision measurements (e.g.: m_t)
- The iterative BLUE has in general smaller RMS and less bias



- Correlation between systematic uncertainties was varied from ρ=0 to ρ=1
- Bias was measured varying the correlation ρ
- The iterative BLUE has in general smaller RMS and less bias



What we have learned

- Iterative BLUE method in general reduce biases
 - Better behaved than standard BLUE method, but not perfect either
 - In case of single top combination: difference is minor
- Not all uncertainties should be rescaled
 - Data-driven bkg. uncertainties
 - Stat uncertainty (at 1st order)
 - Others ?
- More investigations
 ongoing...

