b-fragmentation in experimental analyses

Peter Schleper, Markus Seidel, Hartmut Stadie

Universität Hamburg

Nov 29, 2013

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Markus Seidel (UHH)

Modelling of jets: From (b) quarks to detectable hadrons

- **1** Parton (from hard process)
- 2 Parton shower (Pythia, Herwig)
 - Gluon emission: $q \rightarrow qg$,
 - Gluon splitting: $g \rightarrow q \bar{q}, gg$
 - Good constraints from Z decays

3 Hadronization (Pythia, Herwig)

- Non-perturbative formation of hadrons along colour strings
- Steered by fragmentation functions and flavour parameters
- 4 Hadron decays (Pythia, Herwig, EvtGen)
 - Steered by decay tables
 - \blacksquare Clean Z \rightarrow hadrons events from LEP used for tuning model parameters
 - Complete description of pp collisions also includes underlying event, colour reconnections...

Markus Seidel (UHH)

Hadronization

Fragmentation functions

Markus Seidel (UHH)

b-fragmentation in experimental analyses

Nov 29, 2013 3 / 23

Lund string fragmentation

- $q_0 \bar{q}_0$ pair spans string with tension $\kappa \approx 1 \text{ GeV/fm}$
- On string break
 - Production of new $q_1 \bar{q}_1$ pair
 - $f(z) = \text{fraction of } (E + p_z) \text{ taken}$ by hadron $q_0 \bar{q}_1$
 - $p_{x,y}$: Gauss with $\sigma = 0.3$ GeV
- Light flavour

$$f(z) \propto rac{1}{z} (1-z)^{a} \exp\left(rac{-bm_{\perp}^{2}}{z}
ight)$$

Heavy flavour (Bowler extension)

$$f(z) \propto rac{1}{z^{1+r \cdot bm_{\perp}^2}} (1-z)^a \exp\left(rac{-bm_{\perp}^2}{z}
ight)$$

Tunable parameters: a, b, r
 a, b same for all flavours in Pythia6,
 r can be separated to r_c, r_b

Markus Seidel (UHH)

Motion of quarks and antiquarks in a $q\overline{q}$ system:

All flavour fragmentation

- Use infrared-unsafe observables that are sensitive to hadronization
- N_{ch} , log of scaled momentum $\xi_p = -\ln(|p|/E_{beam})$
- \blacksquare P12FL \rightarrow harder fragmentation, P12FT \rightarrow softer fragmentation

Light-quark fragmentation variations (left) P12 FT/FL variations

Modest, cover spread of fragmentation tunings

(right) P12 toy variations

- Try out large variations, modify universal parameters *a*, *b*
- Get feeling for impact of fragmentation functions

Markus Seidel (UHH)

Impact of large fragmentation variations

Large fragmentation variations → visible impact on N_{ch}, ξ_p
 Behaviour still similar to radiation variation

Markus Seidel (UHH)

Disentangling fragmentation functions and radiation

Thrust

- 1-T=0: back-to-back
- 1-T=1/2: isotropic
- Different behaviour of event shapes for fragmentation and radiation
- Expect different scaling with E_{beam}

 \rightarrow Take into account many measurements, iterate or use Professor

Markus Seidel (UHH)

Hadronization

Fragmentation functions for bottom quarks

Markus Seidel (UHH)

b-fragmentation in experimental analyses

Nov 29, 2013 9 / 23

b-fragmentation in LHC measurements

Many functions on the market

- Different models (Bowler-Lund, Peterson, ...)
- Several parameter sets

Expect impact on...

- measurements of B hadrons or their decay products
- b-tagging for jets
- b jet energy scale: harder fragmentation
 - \rightarrow more energy in jet cone

b-fragmentation function vs. observable x_B

Many functions on the market

- Different models (Bowler-Lund, Peterson, ...)
- Several parameter sets

Experimental observable

Most useful: $x_B = E_B/E_{beam}$, with B-hadron B

Assigning an uncertainty on b-fragmentation

- Improved fit to *x_B* by Corcella tune
- Compare default vs. Corcella?
- Issue: Impacts also light quarks
 - Included in jet energy corrections
 - Expect cancellation by simultaneous fits

Variation based on Z2

- r_b is relevant parameter for x_B hardness, leave others (a, b) untouched
- Tuned to cover uncertainty on x_B

Possible recipe

- MAX(x_B uncertainties, retune r_b to minimal χ²)
- Would cover non-optimal hadronization tuning of Z2

Which measurements to take into account?

SLD vs. DELPHI vs. ALEPH (OPAL and L3 in Rivet?)

- SLD favors softer fragmentation but large uncertainties for high x_B, probably needs retuning of a,b to correct shape
- LEP favors harder fragmentation, decent description achievable by r_b moving peak

If r_b variations give stable (and sensible) fit results for both:

Could use SLD as down, LEP as up variation

Other observables for b-fragmentation

(right) Log of scaled momentum in b events

91 GeV ee

- OPAI Pythia 6 (371:radHi)

Pythia 6 (372:radLo)

Log of scaled momentum (OPAL b events)

Nov 29, 2013

14 / 23

⁴/10² 1/9 1/9

Z (hadronic

Markus Seidel (UHH)

Markus Seidel (UHH)

b-fragmentation in experimental analyses

Nov 29, 2013 15 / 23

New measurements based on $B \rightarrow J/\Psi + X$

• Preparations for measurement of m_t using $B \rightarrow J/\Psi \rightarrow \mu^+ \mu^-$ (CMS PAS TOP-13-007)

Will allow to measure m_t by m_{ℓμ+μ-}, independent of hadron responses
 Requires good understanding of J/Ψ production inside b jets

Markus Seidel (UHH)

J/Ψ in different tunes

Observation: Correct J/Ψ multiplicity in tune Z2, too low in P11
 Mismatch also visible in LEP Z→hadrons events

17 / 23

Heavy-flavoured spin-1 mesons in different tunes

- Difference in Hadronization: Probabilities for charmed spin-1 mesons in flavour combination (Z2: P=0.75, P11: P=0.54)
- (left) P11 improves *D*^{*+} multiplicity
- (right) P11 has too few B^* , may affect $J/\Psi p_T$ (to be studied)
- How can it impact decay BRs to J/Ψ ?

J/Ψ production in resonance decays

1 Parton shower Production via gluon emission and splitting

$$\bullet c_1 \rightarrow c_1 g \rightarrow c_1 c_2 \bar{c}_2 \rightarrow J/\Psi + c_2$$

• Very rare: 6 J/Ψ mesons in 20,000 $Z
ightarrow c ar{c}$ events

2 Hadronization Charm/bottom not produced in string fragmentation

3 Hadron decays Specified in decay tables

- Need BR ($B
 ightarrow J/\Psi + \dots$) \sim 0.013 to get correct multiplicity
- Explicit branching ratios to J/Ψ
 - Pythia6: BR $(B \to J/\Psi + ...) = 0.002$
 - Pythia8: BR $(B \rightarrow J/\Psi + ...) = 0.005$
- Production via $\chi_{c1}, \Psi(2S)$ only in Pythia8 (BR~0.002)
- Implicit branching ratio via decay to strings
 - $B
 ightarrow c ar{c} ar{s} \left(u/d
 ight) +$ subsequent flavour combination
 - BR $(B \rightarrow \text{strings}) = 0.08 \leftarrow \text{huge!}$
 - Meson formation then steered by hadronization parameters
 - Gives BR $(B \rightarrow J/\Psi + ...) \sim 0.0\overline{13 \times P}$ (charmed spin-1 mesons)

Improvements by EvtGen?

Markus Seidel (UHH)

b-fragmentation in experimental analyses

Nov 29, 2013 20 / 23

EvtGen for J/Ψ production

- EvtGen provides improved description of hadron decays
- Higher explicit BRs to J/Ψ (like Pythia8)
- J/Ψ rate in P11+EvtGen ok; too large in Z2+EvtGen

Slight flavour retuning needed for using EvtGen correctlyEvtGen not suitable as drop-in replacement, ongoing studies in CMS

Markus Seidel (UHH)

EvtGen: B meson decay parameters Lifetimes

сτ	PDG (EvtGen)	Pythia6
B^0	0.4557+/-0.0021	0.468
B^+	0.4923+/-0.0024	0.462

- EvtGen uses PDG value
- Important for b-tagging but absorbed in scale factors
- Measurements based on B decay length need reweighting

Semi-leptonic branching ratios

BR	PDG $B \to \ell^+ \nu_\ell X$	PDG $B \to D\ell^+ \nu_\ell X$
	(Pythia)	(EvtGen)
B^0	0.1033+/-0.0028	0.092+/-0.008
B^+	0.1099+/-0.0028	0.098+/-0.007

BR in EvtGen refers to less precise measurement, 1% difference
Impact on the low-response tail of the jet response (per-mille level)

Markus Seidel (UHH)

b-fragmentation in experimental analyses

Nov 29, 2013 22 / 23

Summary

- Precise top measurements at the LHC are becoming sensitive to finer aspects of modelling
- Improve understanding to decrease/solidify systematic uncertainties

Hadronization

- Use variations of b-fragmentation to evaluate uncertainty
 - Procedure limited to e^+e^- at $\sqrt{s} = 91$ GeV
 - Uncertainties for extrapolating to pp and higher energies?
- Useful to have: direct measurement of b-JES in pp

Hadron decays

- Large portion of J/Ψ production steered by hadronization parameters
- EvtGen improves description of B decays but needs some retuning