Event Deconstruction

applied to Z^{\prime}-> $\dagger \dagger$

Michael Spannowsky
University of Durham
work in collaboration with Dave Soper: 1102.3480, 1211.3140

Nature:

Symmetries, Forces, Particles

Result in measurable objects, e.g. Jets, stable leptons, photons

Experiments measure radiation

Theory assumption:
Symmetries, Forces, Particles

Encoded in Lagrangian Density

$$
\mathcal{L}=\mathcal{L}_{\mathrm{EW}}+\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{Higgs}}
$$

Event Generators predict radiation

Nature:

Symmetries, Forces, Particles

Result in measurable objects, e.g. Jets, stable leptons, photons

Experiments measure radiation

Theory assumption:
Symmetries, Forces, Particles

Encoded in Lagrangian Density

$$
\mathcal{L}=\mathcal{L}_{\mathrm{EW}}+\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\mathrm{Higgs}}
$$

Event Generators predict radiation

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method

In quantum process the probability of a radiation pattern to occur is described by the matrix element

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method
[Soper, MS '11]
[Soper, MS '12]
In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access matrix element as directly as possible

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method

In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea: why not calculate the matrix element weight directly for given final state and perform hypothesis test on
 full radiation profile?
(face recognition for LHC events)

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method

In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea: why not calculate the matrix element weight directly for given final state and perform hypothesis test on
 full radiation profile?
(face recognition for LHC events)

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method
[Soper, MS '11]
[Soper, MS '12]
In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea: why not calculate the matrix element weight directly for given final state and perform hypothesis test on full radiation profile?

[Sean Connery]
(face recognition for LHC events)

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method
[Soper, MS '11]
[Soper, MS '12]
In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea: why not calculate the matrix element weight directly for given final state and perform hypothesis test on
 full radiation profile?
(face recognition for LHC events)

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method
[Soper, MS '11]
[Soper, MS '12]
In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea: why not calculate the matrix element weight directly for given final state and perform hypothesis test on

[Richard Attenborough] full radiation profile?
(face recognition for LHC events)

Solving Phenomenology using Event Deconstruction

= fully automated event pattern matching method

In quantum process the probability of a radiation pattern to occur is described by the matrix element

All reconstruction methods (observables) are
trying to access
matrix element
as directly as possible

Idea of Event Deconstruction:
Calculate analytically the perturbative part, fit to data the non-perturbative (universal) part

Nature:

Symmetries, Forces, Particles

Result in measurable objects

Experiments measure radiation

Theory assumption:
Symmetries, Forces, Particles
个
Encoded in Lagrangian Density

Event Generators predict radiation

Is it possible to perform such hypothesis test given complexity of LHC events?

At least full event generators do a good job reproducing data...

Is it possible to perform such hypothesis test given complexity of LHC events?

At least full event generators do a good job reproducing data...

Parton shower in a nutshell

The parton shower bridges the gap from the hard interaction scale down to the hadronization scale $O(1) \mathrm{GeV}$

partons from the hard interaction emit other partons (gluons and quarks)

Probability enhanced in soft and collinear region due to $\sim 1 /\left(p_{1}+p_{2}\right)^{2}$

- If $p_{1} \rightarrow 0$, then $1 /\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
- If $p_{2} \rightarrow 0$, then $1 /\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
- If $p_{2} \rightarrow \lambda p_{1}$, then $1 /\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$

Example

$e^{+} e^{-} \rightarrow 3$ jets

Collinear limit: $\quad d \sigma_{e e \rightarrow 3 j} \approx \sigma_{e e \rightarrow 2 j} \sum_{j \in\{q, \bar{q}\}} \frac{\alpha_{s}}{2 \pi} \frac{d \theta_{j g}^{2}}{\theta_{j g}^{2}} P(z)$

$$
P_{q \rightarrow q g}=C_{F} \frac{1+z^{2}}{1-z} \quad P_{g \rightarrow g g}=C_{A} \frac{(1-z(1-z))^{2}}{z(1-z)} \quad P_{g \rightarrow q \bar{q}}=T_{R} n_{f}\left(z^{2}+(1-z)^{2}\right)
$$

Soft limit: $\quad E_{g} \rightarrow 0 \quad k^{\mu} \ll p_{i}^{\mu} \quad$ the matrix element for

$$
e^{+} e^{-} \rightarrow \bar{q} q g \quad \text { factorizes (Eikonal Current) }
$$

$$
\begin{gathered}
\downarrow \text { dipole } \\
\left|\mathcal{M}_{q \bar{q} g}\right|^{2}=\left|\mathcal{M}_{q \bar{q}}\right|^{2} g_{s}^{2} C_{F} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}
\end{gathered}
$$

In the large Nc limit most radiation occurs in a cone between colour partners

Factorization of emissions and Sudakov factors allow semiclassical approximation of quantum process:

Sudakov form factor:

$$
\begin{aligned}
\mathcal{P}_{\text {nothing }}(0<t \leq T) & =\lim _{n->\infty} \Pi_{i=0}^{n-1} \mathcal{P}_{\text {nothing }}\left(T_{i}<t \leq T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \Pi_{i=0}^{n-1}\left(1-\mathcal{P}_{\text {something }}\left(T_{i}<t \leq T_{i+1}\right)\right) \\
& =\exp \left(-\int_{0}^{T} \frac{d \mathcal{P}_{\text {something }}(t)}{d t} d t\right) \\
\leftrightarrows d \mathcal{P}_{\text {first }}(T) & =d \mathcal{P}_{\text {something }}(T) \exp \left(-\int_{0}^{T} \frac{d \mathcal{P}_{\text {something }}(t)}{d t} d t\right)
\end{aligned}
$$

Sudakov form factor provides "time" ordering of shower:

$$
\begin{aligned}
& Q_{1}^{2}>Q_{2}^{2}>Q_{3}^{2} \\
& \text { low } Q^{2} \leftrightarrow \text { longer time }
\end{aligned}
$$

In summary:

The probability weights in the evolution from the hard interaction scale to the hadronization scale are given by Sudakov factors and splitting functions.
vertices $=$ Splitting functions
propagator-lines $=$ Sudakov factors
hadronization scale

To obtain a weight which indicates if a specific final state was more likely to be initiated by signal or background we have to sum over all possibilities

To obtain a weight which indicates if a specific final state was more likely to be initiated by signal or background we have to sum over all possibilities

To obtain a weight which indicates if a specific final state was more likely to be initiated by signal or background we have to

To obtain a weight which indicates if a specific final state was more likely to be initiated by signal or background we have to

To obtain a weight which indicates if a specific final state was more likely to be initiated by signal or background we have to

Event Deconstruction = Matrix. Method + Shower Deconstruction

(publicly available package to come)

Event Deconstruction = Matrix. Method + Shower Deconstruction

(publicly available package to come)

Event Deconstruction = Matrix. Method + Shower Deconstruction

(publicly available package to come)

Event Deconstruction = Matrix. Method + Shower Deconstruction

(publicly available package to come)

Event Deconstruction vs matrix element method

(or 'the performance enhancing power of a shower')

The matrix element method in a nutshell:

Given a theoretical assumption α, attach a weight $P(\mathbf{x}, \alpha)$ to each experimental event \mathbf{x} quantifying the validity of the theoretical assumption α for this event.

$$
P(\mathbf{x}, \alpha)=\frac{1}{\sigma} \int d \phi(\mathbf{y})\left|M_{\alpha}\right|^{2}(\mathbf{y}) W(\mathbf{x}, \mathbf{y})
$$

$\left|M_{\alpha}\right|^{2} \quad$ is squared matrix element
$W(\mathbf{x}, \mathbf{y}) \quad$ is the resolution or transfer function
$d \phi(\mathbf{y}) \quad$ is the parton-level phase-space measure

The value of the weight $P(\mathbf{x}, \alpha)$ is the probability to observe the experimental event \mathbf{x} in the theoretical frame α

Event Deconstruction vs matrix element method

(or 'the performance enhancing power of a shower')

Purpose of the transfer function is to match jets to partons

Probability density function: $\quad \int d \mathbf{y} W(\mathbf{x}, \mathbf{y})=1$

Event Deconstruction vs matrix element method

(or 'the performance enhancing power of a shower')

The form of the transfer function:
resolution in

$$
\begin{array}{rlr}
W(\mathbf{x}, \mathbf{y}) & \approx \Pi_{i} \frac{1}{\sqrt{2 \pi} \sigma_{E, i}} e^{-\frac{\left(E_{i}^{r e c}-E_{i}^{g e n}\right)^{2}}{2 \sigma_{E, i}^{2}}} & \text { Energy } \\
& \times \frac{1}{\sqrt{2 \pi} \sigma_{\phi, i}} e^{-\frac{\left(\phi_{i}^{r e c}-\phi_{i}^{g e n}\right)^{2}}{2 \sigma_{\phi, i}^{2}}} & \text { azimuthal angle } \\
& \times \frac{1}{\sqrt{2 \pi} \sigma_{y, i}} e^{-\frac{\left(y_{i}^{r e c}-y_{i}^{g e n}\right)^{2}}{2 \sigma_{y, i}^{2}}} & \text { rapidity }
\end{array}
$$

Complex, high-dimensional gaussian distribution!
Transfer function introduces new peaks on top of propagators

Shower deconstruction vs matrix element method
(or 'the performance enhancing power of a shower')
Shortcomings/Problems of the matrix element method:

- A hadronized final state has to be matched to a parton level matrix element
\Rightarrow Number of final state objects limited to fixed order ME
\Rightarrow Limited and fix number of final state objects (jets, leptons, ...)
\Rightarrow Transfer function fit dependent (input from experiment)
- transverse boost used to reduce jet sensitivity
\Rightarrow Large systematic uncertainty + loos information from jets
- Extremely time consuming calculation
\Rightarrow The more particles the higher-dimensional the MC integration

Shower deconstruction vs matrix element method
(or 'the performance enhancing power of a shower')
Shortcomings/Problems of the matrix element method:

- A hadronized final state has to be matched to a parton level matrix element
\Rightarrow Number of final state objects limited to fixed order ME
\Rightarrow Limited and fix number of final state objects (jets, leptons, ...)
\Rightarrow Transfer function fit dependent (input from experiment)
- transverse boost used to reduce jet sensitivity
\Rightarrow Large systematic uncertainty + loos information from jets
- Extremely time consuming calculation
\Rightarrow The more particles the higher-dimensional the MC integration

All problems solved by putting $W(\mathbf{x}, \mathbf{y})=\delta(\mathbf{x}-\mathbf{y})$

Difference between both methods:

Remove dependence on transfer function
\Rightarrow Only needed when matrix element varies quickly

- replace physical Breit-Wigner with experimental
\Rightarrow Huge gain in speed!
Allow for arbitrary number of final state objects
- Shower approximation removes final state object limitation
\Rightarrow No hard matrix element <-> final state object matching needed
Use smallest reconstructable objects in event
\Rightarrow More information
\Rightarrow Retains sensitivity in boosted final states
\Rightarrow Radiation collimated $->$ need Sudakov factors

Difference between both methods:

Remove dependence on transfer function $W(\mathbf{x}, \mathbf{y})=\delta(\mathbf{x}-\mathbf{y})$
\Rightarrow Only needed when matrix element varies quickly

- replace physical Breit-Wigner with experimental
\Rightarrow Huge gain in speed!
Allow for arbitrary number of final state objects
\Rightarrow Shower approximation removes final state object limitation
\Rightarrow No hard matrix element <-> final state object matching needed
Use smallest reconstructable objects in event
\Rightarrow More information
\Rightarrow Retains sensitivity in boosted final states
\Rightarrow Radiation collimated $->$ need Sudakov factors

Generic kinematic in New Physics search

[See Gilad's talk]

How can Event Deconstruction be used to tag a boosted electroweak-scale resonance and improve on BDRS?

Tagger implicitly ignores rest of event, i.e. production mechanism (strictly not correct [Joshi, Pilkington, MS])

Fat jet: $\mathrm{R}=1.2$, anti-kT

microjets

signal vs background hypothesis based on:

- Emission probabilities
- Color connection
- Kinematic requirements
-b-tag information

Fat jet: $\mathrm{R}=1.2$, anti-kT

Build all possible shower histories
signal vs background hypothesis based on:

- Emission probabilities
microjets

Fat jet: $\mathrm{R}=1.2$, anti-kT

ISR/UE hard interaction

Build all possible shower histories
signal vs background hypothesis based on:

- Emission probabilities
- Color connection
- Kinematic requirements
-b-tag information

- And many more...
- And for all backgrounds...

Results for Higgs boson:

$$
\chi\left(\{p, t\}_{N}\right)=\frac{P\left(\{p, t\}_{N} \mid \mathrm{S}\right)}{P\left(\{p, t\}_{N} \mid \mathrm{B}\right)}
$$

imperfect b-tagging ($60 \%, 2 \%$) no b-tag required

Analogously for the top decay (more involved as top colored)

Conceptional difference compared to Riggs from last year:

- Splitting functions for massive emitter and spectator
- Full matrix element for top decay
$\chi\left(\{p, t\}_{N}\right)=\frac{P\left(\{p, t\}_{N} \mid \mathrm{S}\right)}{P\left(\{p, t\}_{N} \mid \mathrm{B}\right)}=\frac{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }}|\mathcal{M}|^{2} H_{\text {top }} e^{-S_{t_{1}}} H_{t g}^{s} e^{-S_{g}} \cdots}{\sum_{\text {histories }} H_{I S R} \cdots \sum_{\text {histories }} H_{g}^{b} e^{S_{g}} H_{g g g} \cdots}$
chi distribution for top vs QCD

Results for top quark tagging:

pTj > $500 \mathrm{GeV}, \mathrm{R}=1.2 \mathrm{CA}$

microjets: $k T, R=0.2, p^{T}>5 \mathrm{GeV}$

Event Deconstruction can be used to measure parameter of the theory, e.g. W mass.

Significance for different hypotheses for Mw:

First application of Event Deconstruction

fully hadronic Z^{\prime}-> $\dagger \dagger$

Signal
$\dagger \mp$
dijets

Model: mass $Z^{\prime}=1500 \mathrm{GeV}$ with width $=65 \mathrm{GeV}$

Event selection:

2 fat jets with $\mathrm{PT}>400 \mathrm{GeV}$ jet algorithm CA R=1.5

Cross section after ES:

dijets	1.73 nb
ttbar	2.27 pb

Recluster fatjet constituents using microjets kT R=0.2 pT>10 GeV

Z' width in Event Dec. 130 GeV

Hard matrix element generated with MadGraph5

$$
\chi=\frac{P\left(X \mid Z^{\prime}\right)}{P(X \mid t \bar{t}+\text { dijets })}
$$

Event Dec: eff : 0.109538
fkr: 3.20063e-05
1/fkr : 31243.8

HTT: eff: 0.104659
fkr: 0.000259946
1/fkr: 3846.95

Vary Z^{\prime} mass in Event Deconstruction (keep width fix $=130 \mathrm{GeV}$)

True Z^{\prime} mass is 1500 GeV

Invariant mass for fatjets j1+j2

\rightarrow Difference between true and tested z^{\prime} mass understandable

Conclusions

- Matrix Element Methods -> Shower Deconstruction -> Event deconstruction = Maximum information approach
- Shower/Event deconstruction modular structure: Can be fully automated
- Method being tested in data by ATLAS and CMS
- Method not optional!

Heavy resonances -> boosted ew scale res. -> coll. radiation
-> Sudakov factors (normal matrix element method breaks down)

