

Towards a Measurement of Spin Correlations in ttbar Events at the LHC using Matrix Element Method

Kelly Beernaert¹, Martin Grünewald^{1,2}, <u>Efe Yazgan</u>¹

- 1) University of Ghent, Belgium
- 2) University College Dublin, Ireland

ZPW2014 Monte Carlo Simulation and 2nd Mini-Workshop on Advances in the Matrix Element Methods

8-10 January 2014 University of Zürich

The Top Quark

- The most massive particle known to date (m_t~173 GeV)
 - very short lifetime

$$\tau_{t} = \frac{1}{\Gamma_{t}} \sim 0.5 \times 10^{-24} s < \frac{1}{\Lambda_{QCD}} < \frac{m_{t}}{\Lambda_{QCD}^{2}} \sim 3 \times 10^{-21} s < < \tau_{b} \sim 10^{-12} s$$

 $\tau_{t} < \tau (hadronization) < \tau (spin - decorrelation) << \tau_{b}$

No hadronic bound states \rightarrow bare quark properties are accessible (mass, V_{tb} , charge, ...).

spin effects propagate to decay products.

Measurements test

- → top quark being bare
- → pQCD in ttbar production
- → existence of
 - \rightarrow t \rightarrow H+b
 - → production through heavy particles
 - → heavy higgs → ttbar

ttbar Spin Correlations

The spin correlation strength A is defined as

$$A = \frac{\left(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}\right) - \left(N_{\uparrow\downarrow} + N_{\downarrow\uparrow}\right)}{\left(N_{\uparrow\uparrow} + N_{\downarrow\downarrow}\right) + \left(N_{\uparrow\downarrow} + N_{\downarrow\uparrow}\right)}$$

- Not a free parameter of the SM Lagrangian, but depends on:
 - ◆ SM couplings, production mode, collision energy, basis of the spin quantization axis, ...
- A is proportional to the fraction of events f with SM spin correlations

$$A_{basis}^{meas} = A_{basis}^{SM} f$$
 where $f = \frac{N_{SM}}{N_{SM} + N_{non-SM}}$

- At Tevatron: beam axis basis (A=0.37 in lepton+jets)
- At LHC: helicity basis (A=0.16 in lepton+jets)

ttbar Spin Correlations

$$D0: f = 0.85 \pm 0.29 (stat \oplus sys)$$

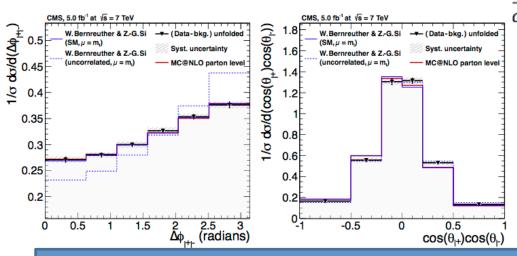
[MEM, PRL 108, 032004 (2012)]

ATLAS:

$$f = 1.19 \pm 0.09(stat) \pm 0.15(sys) \leftarrow \Delta \phi$$

[Dilepton, ATLAS-CONF-2013-101]

$$f = 0.87 \pm 0.11(stat) \pm 0.12(sys) \leftarrow$$
 S-ratio of on-shell MEs from fusion of like-helicity gluons \leftarrow not MEM


$$f = 0.75 \pm 0.19(stat) \pm 0.25(sys) \leftarrow \cos(\theta_{+})\cos(\theta_{-})$$
 helicity basis; direct extraction of A.

$$f = 0.83 \pm 0.14(stat) \pm 0.17(sys) \leftarrow \cos(\theta_{+})\cos(\theta_{-})$$
 maximal basis; defined event by event.

$$CMS: f = 0.74 \pm 0.08(stat) \pm 0.24(sys) \leftarrow \Delta \phi$$

P. Uwer, PLB 609, 271 (2005)

[Dilepton, CMS-PAS-TOP-12-004]

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{+} d\cos\theta_{-}} = \frac{1}{4} \left(1 + A\alpha_{+}\alpha_{-}\cos\theta_{+}\cos\theta_{-} \right)$$

All measurements are consistent with SM, i.e., f=1.

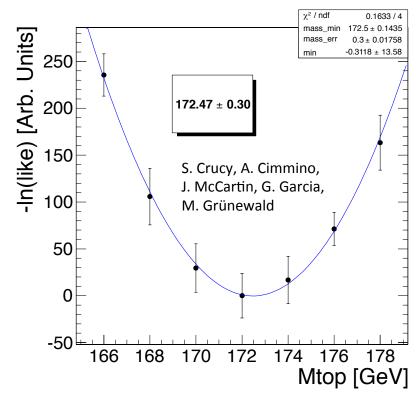
[Dilepton, CMS-PAS-TOP-13-003, arXiv:1311.3924v1]

ttbar Spin Correlations

- Angles between the decay products are the most sensitive variables to the spin correlation (depending on the final state particles).
- However, we have the potential to do better by exploiting the full event information.
 - Use matrix element method to construct templates based on event likelihoods

$$P(x_{i}|H) = \frac{1}{\sigma_{obs}} \int f_{PDF}(q_{1}) f_{PDF}(q_{2}) dq_{1} dq_{2} \frac{(2\pi)^{4} |M(y,H)|^{2}}{q_{1}q_{2}s} W(x,y) d\Phi_{6}$$

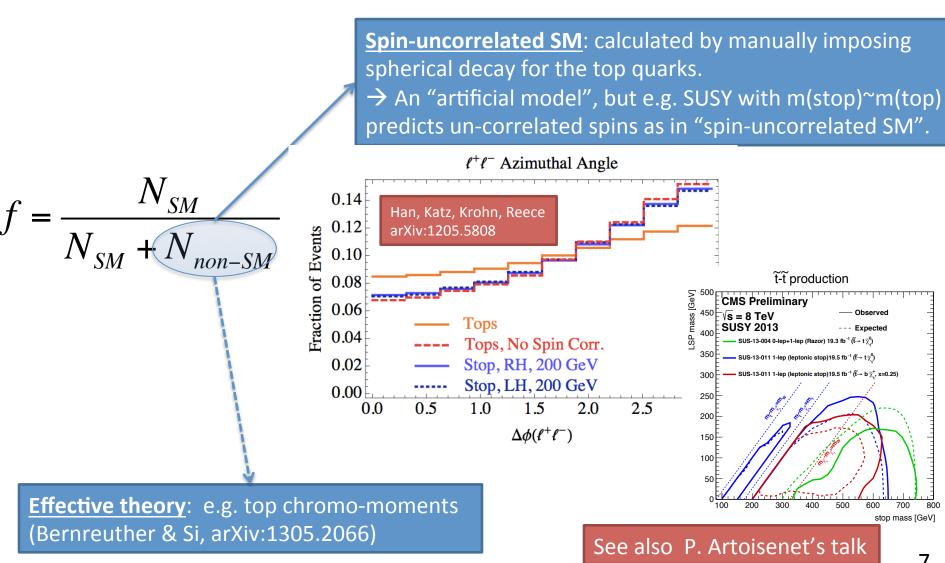
 q_1 and q_2 : the initial parton kinematics


W(x,y): Transfer Function that maps the reconstructed kinematics x to the parton level kinematics, y.

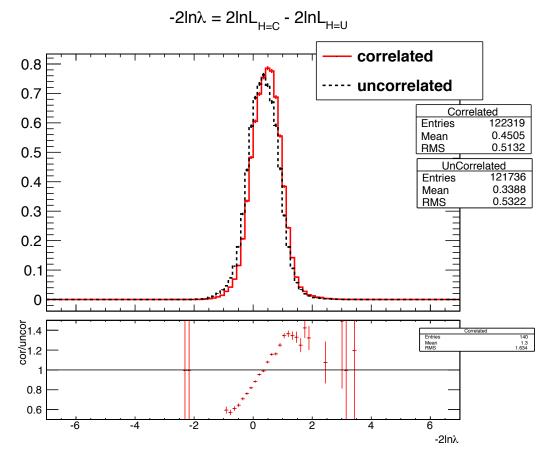
H: hypothesis under consideration

Calculate the likelihood/event for each hypothesis: for the SM and the non-SM hypotheses.

First Steps in the Measurement: Strategy


- As opposed to top quark mass measurement: our hypotheses are discrete (i.e. SM & spinuncorrelated SM)
 - We can not vary a parameter in the matrix element to obtain specific values of f (or A).
 - Instead we calculate the likelihoods for SM and non-SM cases separately.
 - SM and non-SM events can be mixed to obtain fractional f values for pseudo-experiments.

In the Mtop measurement with MEM, likelihood is a continuous function of Mtop.


ttbar Spin Correlations: non-SM Model

f can be extracted by performing a template fit to the distribution of a variable that discriminates between SM and non-SM events.

First Steps in the Measurement: Strategy

 With the event likelihoods (one for each hypothesis), we form a discriminating variable

normalised entries

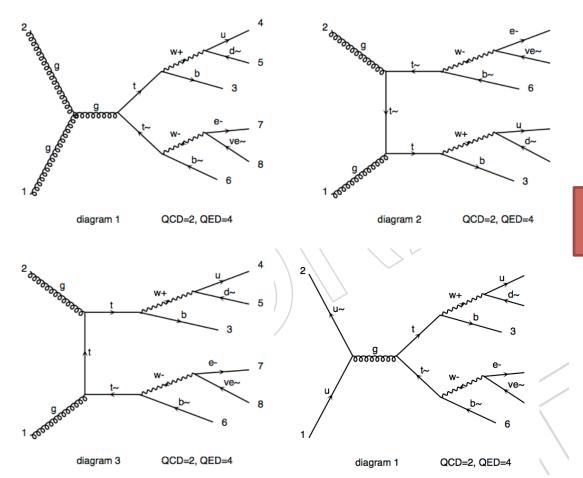
$$-2\ln\lambda = -2\ln\frac{P(H_{non-SM})}{P(H_{SM})}$$

maximum discriminating variable (Neyman and Pearson Phil. Trans. R. Soc. Ser. A 231 (1933) 289)

- A template fit to this variable will be performed.
- Likelihoods calculated using MadWeight.

Templates at Gen Level with acceptance cuts.

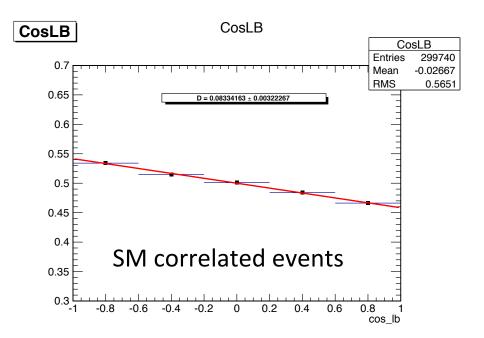
First Steps in the Measurement: Matrix Elements


$$P(x_{i}|H) = \frac{1}{\sigma_{obs}} \int f_{PDF}(q_{1}) f_{PDF}(q_{2}) dq_{1} dq_{2} \frac{(2\pi)^{4} |M(y,H)|^{2}}{q_{1}q_{2}s} W(x,y) d\Phi_{6}$$

- For the likelihood calculation, we need the MEs describing the tt[~] process for SM and non-SM cases valid for both on- and off-shell top quarks.
 - SM ME: is known from the SM Lagrangian and implemented as default in MadWeight and MadGraph.
 - non-SM:
 - Spin-uncorrelated ME: calculated by manually imposing spherical decay for the top quarks.
 - Effective theory with top chromo-moments
- The spin-uncorrelated ME had to be manually implemented in MadWeight and MadGraph5 (by replacing the SM ME by the spin-uncor. one in the fortran code).

The matrix elements were kindly provided to us by *Werner Bernreuther*.

First Steps in the Measurement: Matrix Elements


 The calculation are performed, taking into account only the following leading order Feynman diagrams for both SM and spin-uncorrelated cases.

Method will be calibrated using MC@NLO (or PowHeg).

First Steps in the Measurement: Matrix Elements

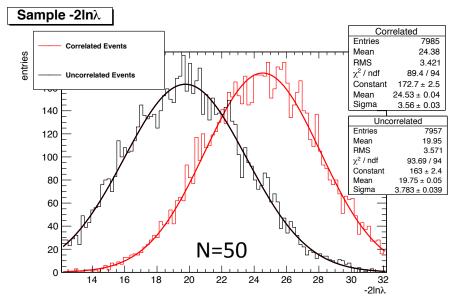
 The implementation of matrix elements was tested by generating events using the default and spin-uncorrelated MEs implemented in MadGraph and checking the angular distributions and cross-sections.

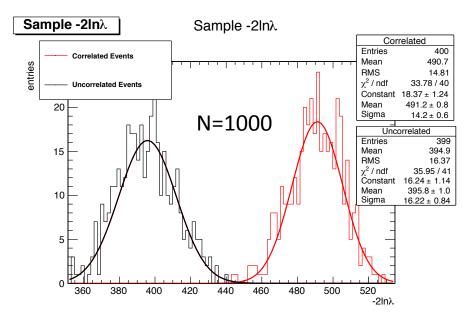
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi_{lb}} = \frac{1}{2} \left(1 - D_{lb} \cos\varphi_{lb} \right)$$

W. Bernreuther et al. Nucl. Phys. B 690 (209) 81

The Measurement and Closure Tests

- With the ability to generate events in both hypotheses, we can validate the feasibility of this measurement.
- The measurement is two-fold:
 - ◆ First discriminate between SM and spinuncorrelated hypotheses → hypothesis testing
 - Extract the spin correlation strength A by measuring the fraction of events f with SM spin correlations.

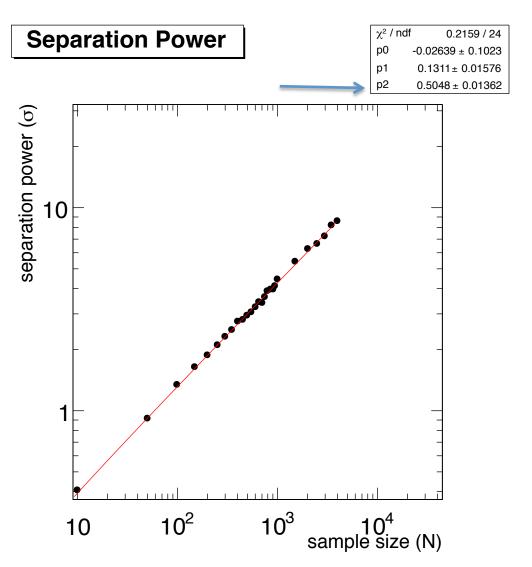

Closure Tests: Hypothesis Testing


■ The sample likelihood can be calculated from the event likelihoods: $-2ln\lambda_{event}$

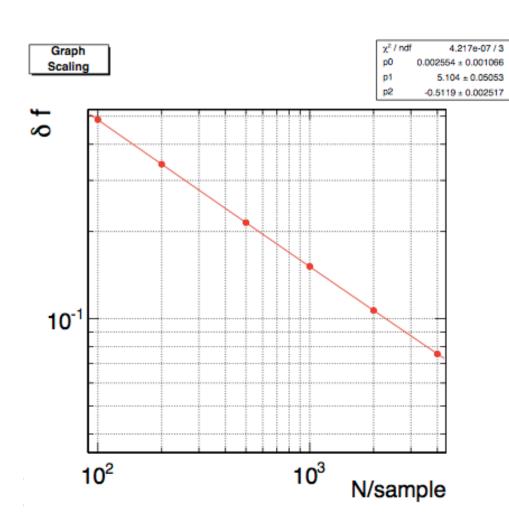
$$-2\ln\lambda_{sample} = -2\sum\ln\lambda_{event}$$

- Generate two event pools (one SM and one spinuncorrelated), with each event processed under both hypotheses.
- Split event pools in pseudo-data of sample size N and calculate $-2ln\lambda_{sample}$.

Closure Tests: Hypothesis Testing

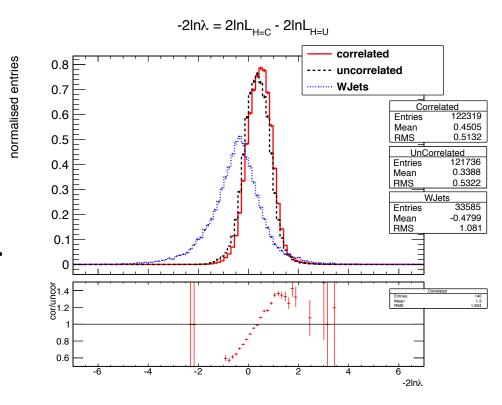


- Pseudo-experiments give a Gaussian distribution for -2lnλ_{sample}.
- The separating power increases with sample size N and given by


$$\sigma = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Closure Tests: Hypothesis Testing

The separating power scales with the square root of the sample size, as expected.



Error Scaling

- The mean fit error from pseudo-experiments vs. pseudo-experiment sample size.
- The error scales with 1/VN, as expected.
- ~100k high purity ttbar +jets events in 8 TeV CMS data (considering only up to 5 jets).
 - ~1% statistical precision at the generator level assuming an ideal detector.

- -2lnλ_{evt}: distribution with the most discriminating power.
- One template for SM events, one template for spinuncorrelated events, (and template(s) for backgrounds).
 - Background likelihoods calculated using ttbar MEs on background events.

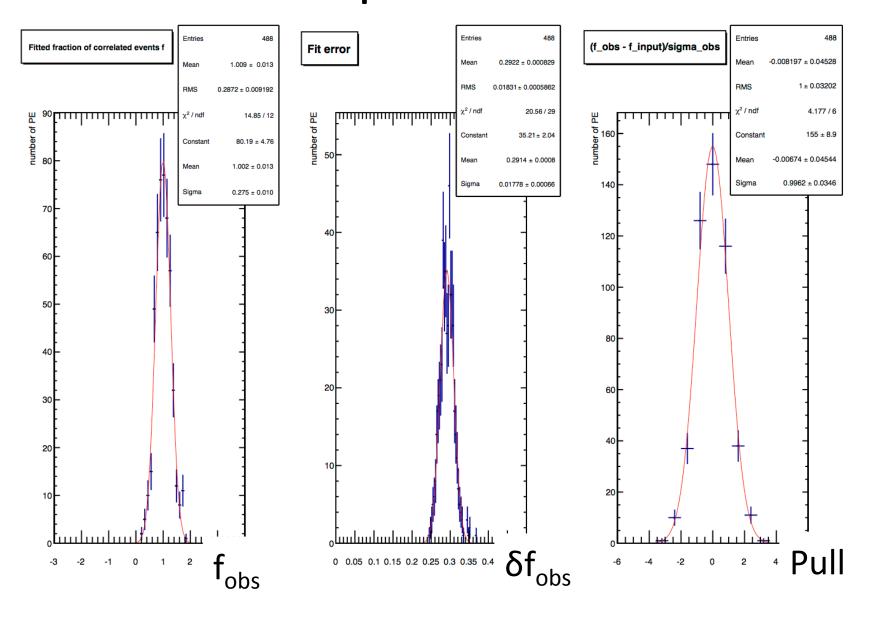
Template fit with maximum likelihood method using the fit model

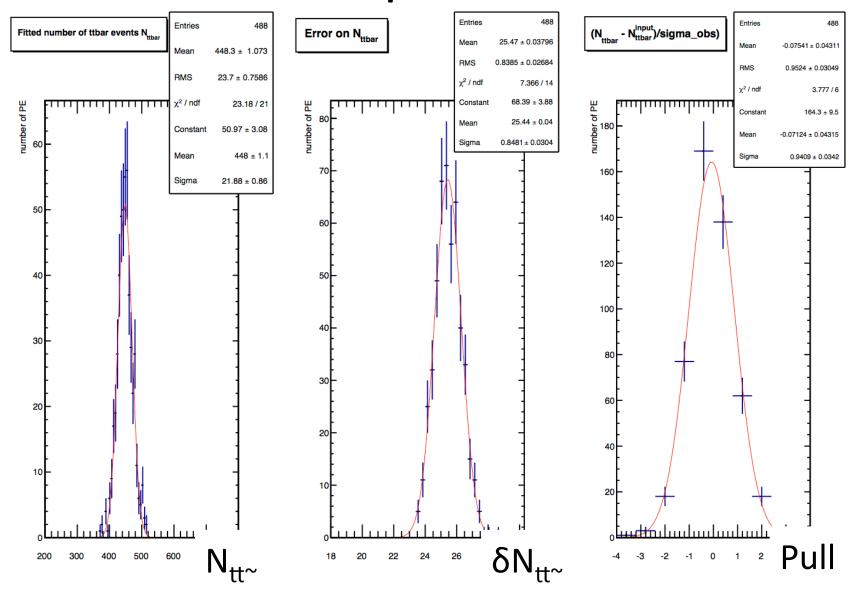
$$\mathbf{m} = N_{t\bar{t}} \left[f^{SM} T_{SM} + \left(1 - f^{SM} \right) T_{spin-uncor} \right] + N_{bkg} T_{bkg}$$

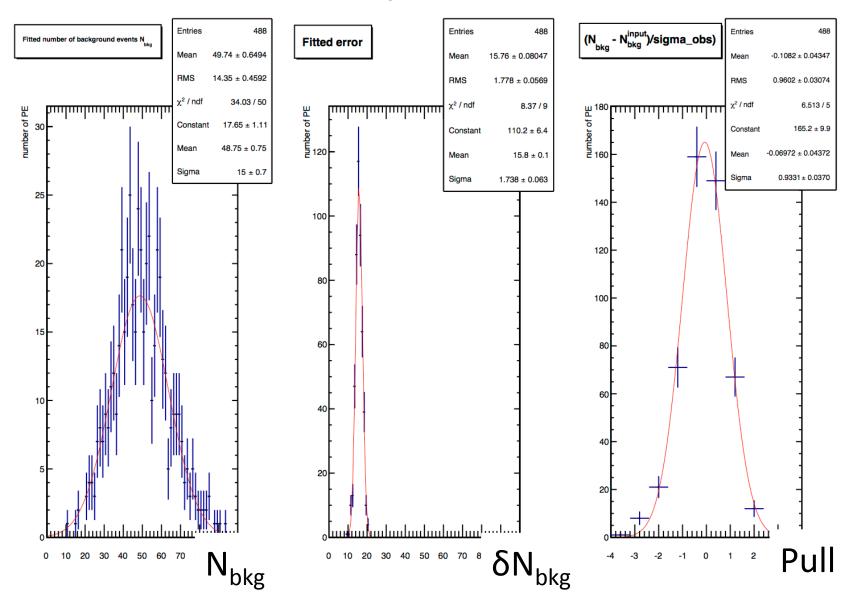
simultaneously extract f^{SM} , number of ttbar $(N_{tt^{\sim}})$ and background (N_{bkg}) events

- Closure tests
 - With varying spin correlation fractions.
 - Effects of backgrounds, acceptance cuts —
 - Transfer functions, ...

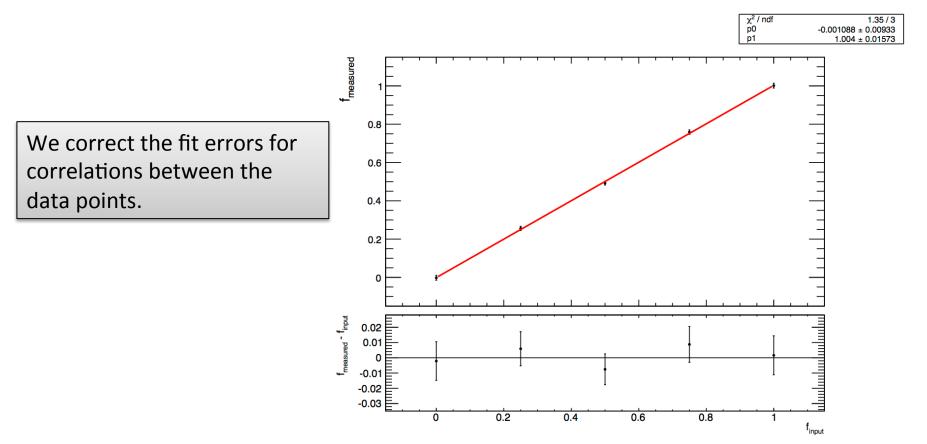
$$\frac{p_T(j) > 30 \text{ GeV,} |\eta(j)| < 2.4}{p_T(e) > 30 \text{ GeV,} |\eta(e)| < 2.5}$$

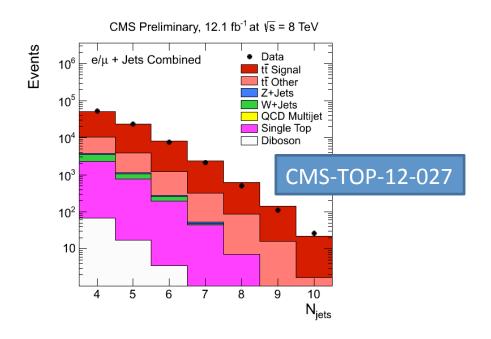

Double Gaussian for light jet and b jets.


Parametrization vs Energy and eta of the parton.


Closure test	N _{evts}	N_{evts}^{uncor}	N_{evts}^{bkg}
Gen. level / No background / No smearing / No acc. cuts	392318	390174	0
Gen. level / No background / No smearing / acc. cuts	121395	121736	0
Gen. level / With background / No smearing / acc. cuts	121395	121736	33585
Gen. level / No background / Smearing / acc. cuts	219100	221400	0
Gen. level / With background / Smearing / acc. cuts	219100	221400	46670

- Very CPU intensive, each event needs to be processed twice, 50 ev ~1h CPU time.
 - However, with the help of CERN computing resources, we have a reasonably fast turnaround time.


- Generate pseudo-experiments of 500 events (Poisson fluctuated).
 - ◆ 10% Wjets, 90% SM events.
 - ◆ --> Expect the distributions to be a Gaussian centered around f=1, N_{tt}~=450 and N_{bkg}=50.
- Fits are performed with the RooFit package.
 - Template histograms are normalized and converted to PDFs.

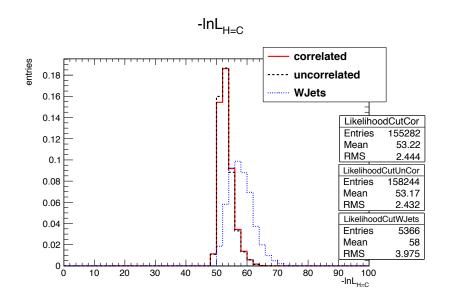


- We manually mix the two event pools (SM and spinuncorrelated) to simulate samples with varying degrees of mixing.
- We can extract any fraction f precisely without a bias.

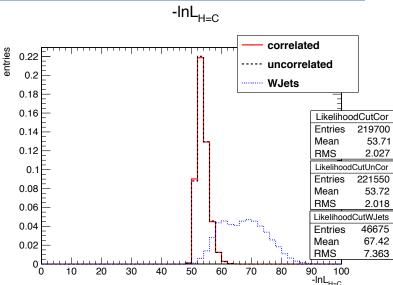
Closure Tests

- Closure tests are successful: we can extract the signal f, ttbar and background cross sections simultaneously.
- The closure tests assumed correct jet-parton assignments with no extra jets in the event.

+ MEs used in MEM are LO, i.e. can take only 4 jets as input.


MEM+Kinematic Fitter

- Require ≥ 2 b-tags.
- Use a kinematic fitter
 - to choose the 4 jets coming from the ttbar decay
 - and calculate the likelihood only for the selected permutation
 - significant decrease in CPU requirements.


- Kinematic fitter modifies the kinematics within object resolutions to obtain kinematics most suitable with constraints (e.g. W_{had}=80.4 GeV, m_{top}=m_{anti-top})
- The solution with the lowest χ^2 and consistent with b-tagging information is taken as the best estimate for the correct permutation.
 - Can it simplify the transfer functions or make them obsolete?

Likelihoods and Kinematic fitter

Kinematic fitter kinematics with quality cuts

No Kinematic fitter
All permutations in MadWeight

→ Likelihoods from SM & spin-uncor evts and bkg sample under the spin corr hypothesis (H=C)

Using the kinematics determined by kinematic fitter (or adding extra quality criteria) forces the background to be ttbar-like.

- + A certain contamination of wrong jet-parton permutations will always be present
 - → Increases the uncertainty.
 - → Running over all permutations in MadWeight ensures the correct one is always considered and yields smaller uncertainty.

I/FSR

- Our LO MEs do not treat radiated jets.
- Ignoring these means working with wrong kinematics.
 - Use only 4 and 5 jet events and treat them separately (or not).
 - Test the ISR treatment in MadWeight.
 - **.**..

Systematic Uncertainties

Three types:

- ◆ Type 0: Normalization uncertainties
 - absolute and background normalizations, integrated luminosity.
- ◆ Type 1: Effects that change the template shapes but can be estimated w/o re-running MadWeight.
 - lepton, trigger, b-tag efficiencies vs pT and eta.
 - pile-up
 - Template stats., PDF uncertainties through weights
 - Kinematic Fit (effect of top mass window and chi2 cut if used).
- ◆ Type 2: Effects that require re-running MadWeight →

Systematic Uncertainties

- Effects that require re-running MadWeight.
 - Jet energy scale and resolution
 - light jets and b jets
 - any uncertainty due to resolution or transfer functions are included in jet energy scale and resolution uncertainties.
 - Taylor expansion of the TFs suggested by Rieck et al. (yesterday) seems reasonable (to be tested. If works → type 1.).
 - Top quark mass
 - Samples with different assumed top mass values.
 - But re-weighting might work within δm_t (then \rightarrow type 1)
 - ◆ ISR/FSR
 - ◆ Samples with different renorm. & fact. scales. → Reweighting if only SM samples exist.
 - Method calibration
 - Signal and background modeling
 - Hadronization
 - Underlying event, Color reconnection
 - **•** ...

Summary

- Spin correlated and uncorrelated matrix elements implemented and tested.
- Validation and study of statistical properties at the generator level + generator level with smeared jets done.
- Studies with kinematic fit + MEM.
- ttbar spin correlation can be measured with high statistical precision using template fits to likelihood ratios determined from matrix element calculations using MadWeight.
- A kinematic fitter helps the measurement in selecting the correct 4 jets to be used as input to MadWeight, however, using the updated kinematics from the kinematic fitter worsens the discriminating power and the precision of the measurement.
- Measurement to come in 2014 with 8 TeV LHC data!

Thanks!

- W. Bernreuther for providing all necessary matrix elements.
- O. Mattelaer, P. Artoisenet for their great help in MadGraph and MadWeight.
- And S. Frixione for discussions and his help in theoretical issues.
- V. Adler for providing the transfer and resolution functions.
- Workshop organizers.