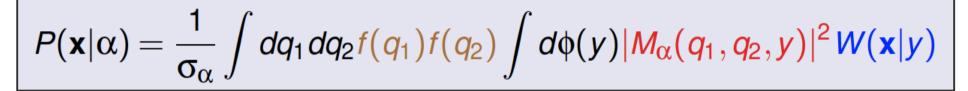
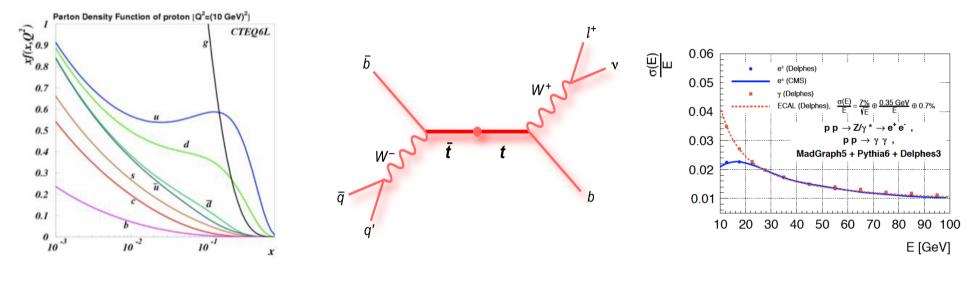


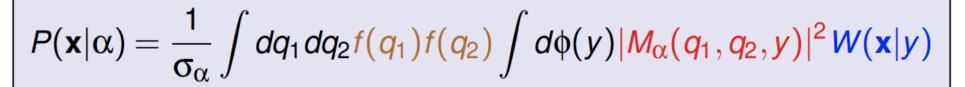
Michele Selvaggi, for the Delphes Team

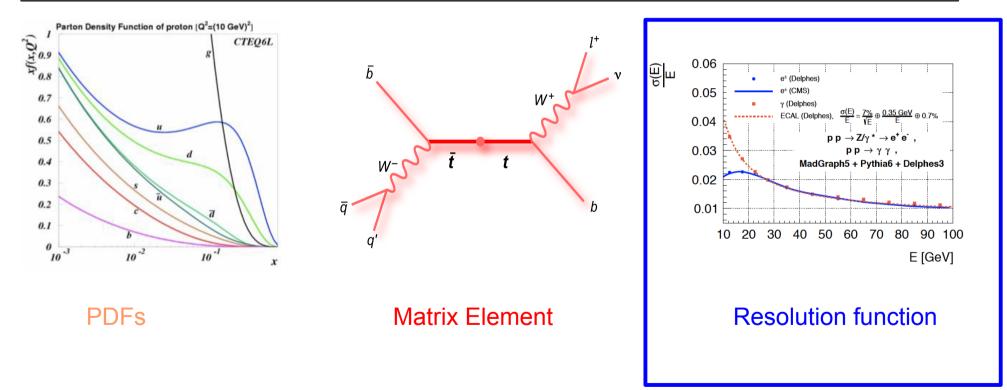

Université Catholique de Louvain (UCL) Center for Particle Physics and Phenomenology (CP3)


> Zurich Phenomenology Workshop 2014 10 January 2014

Motivation

PDFs


Matrix Element


Resolution function

Motivation

 \rightarrow simulation plays key role for asserting resolution functions

Detector simulation

• Full simulation (GEANT):

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) \rightarrow 10-100 s /ev

- Experiment Fast simulation (ATLAS, CMS ...):
 - simplifies and makes faster simulation and reconstruction $\,\rightarrow\,$ 1 s /ev
- Parametric simulation:

Delphes, PGS:

- parameterize detector response, reconstruct complex objects \rightarrow 10 ms /ev

<u>TurboSim</u>

- **no detector**, parameterize object response, parton ↔ reco

Detector simulation

• Full simulation (GEANT):

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) \rightarrow 10-100 s /ev

- Experiment Fast simulation (ATLAS, CMS ...):
 - simplifies and makes faster simulation and reconstruction \rightarrow 1 s /ev
- Parametric simulation:

Delphes:

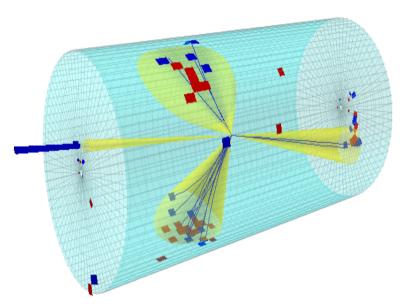
- parameterize detector response, reconstruct complex objects \rightarrow 10 ms /ev

<u>TurboSim</u>

- **no detector**, parameterize object response, parton ↔ reco

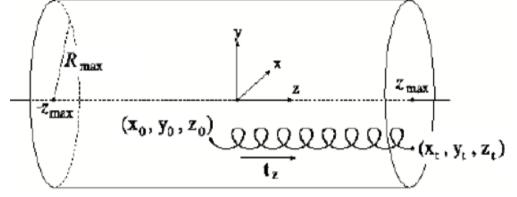
DELPHES

Development


- Delphes project started back in 2007 at UCL
- Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes
 - \rightarrow user proposed patches
 - Quality control and core development is done at the UCL
- In 2013, DELPHES 3 was released:
 - modular software
 - new features
 - included in MG/ME suite
- Widely tested and used by the community (mainly pheno)
- Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes
- Paper: <u>arXiv:1307.6346</u>

DELPHES in a nutshell

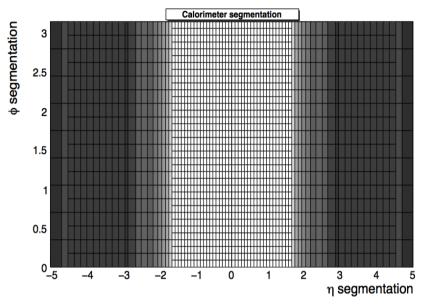
- **Delphes** is a **modular framework** that simulates of the response of a multipurpose detector
- Simulates:
 - pile-up
 - charged particle propagation in magnetic field: tracking
 - electromagnetic and hadronic calorimeters
 - muon system
- reconstructs:
 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy (particle-flow)
 - taus and b's



- Charged particles are propagated in the magnetic field until they reach the calorimeters
- Propagation parameters:
 - magnetic field B
 - radius and half-length (R_{max} , z_{max})
- Efficiency/resolution depends on:
 - particle ID
 - transverse momentum
 - pseudorapidity

# efficiency formula for muons		
add EfficiencyFormula {13} {	(pt <= 0.1)	* (0.000) + \
(abs(eta) <= 1.5) * (pt > 0.1	&& pt <= 1.0)	* (0.750) + \
(abs(eta) <= 1.5) * (pt > 1.0)		* (1.000) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1	&& pt <= 1.0)	* (0.700) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0)		* (0.975) + \
(abs(eta) > 2.5)		* (0.000)}

- Not real tracking/vertexing !!
 - \rightarrow no fake tracks/ conversions (but can be easily implemented)
 - \rightarrow no dE/dx measurements



Calorimetry

- em/had calorimeters have same segmentation in eta/phi
- Each particle that reaches the calorimeters deposits a fraction of its energy in one ECAL cell (f_{EM}) and HCAL cell (f_{HAD}), depending on its type:

particles	f _{em}	f _{HAD}
e γ π ⁰	1	0
Long-lived neutral hadrons ($K^0_{\ s}$, Λ^0)	0.3	0.7
νμ	0	0
others	0	1

 Particle energy is smeared according to the calorimeter cell it reaches

 $E_{Tower} = \sum_{particles} \ln \mathcal{N} \left(f_{ECAL} \cdot E, \sigma_{ECAL}(E, \eta) \right) + \ln \mathcal{N} \left(f_{HCAL} \cdot E, \sigma_{HCAL}(E, \eta) \right)$

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{S(\eta)}{\sqrt{E}}\right)^2 + \left(\frac{N(\eta)}{E}\right)^2 + C(\eta)^2$$
 10

Leptons, photons

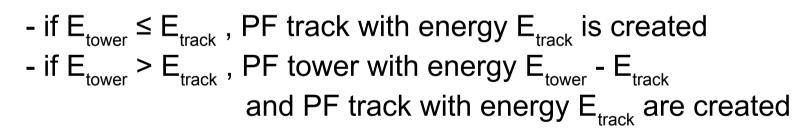
- Muons/photons/electrons
 - identified via their PDG id
 - inside the tracker coverage for electrons and muons
 - muons do not deposit energy in calo (independent smearing parameterized in p_{τ} and $\eta)$
 - electrons and photons smeared according to electromagnetic calorimeter resolution
- Isolation:

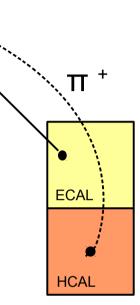
rel.Iso =
$$\frac{\sum_{\Delta R < 0.5} p_T^{track}}{\Delta R < 0.5}$$

 p_T

→ modular structure allows to easily define different isolation

If rel.lso ~ 0, the lepton is isolated


- Not taken into account:
 - fakes, punch-through, brehmstrahlung, conversions



- Inputs can be formed from:
 - calorimeter towers
 - "particle-flow" candidates (tracks and towers):
 - \rightarrow optimally combine calorimeter and tracking information
 - \rightarrow compare track momentum with tower energy:

• Jets, E_T^{miss} and H_T^{-} quantities can be computed from both calorimeter towers and particle-flow candidates.

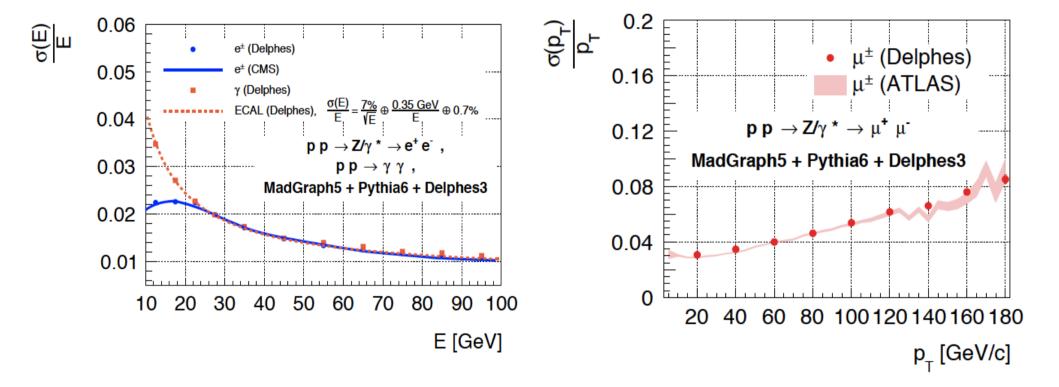
b and tau jets

- <u>b-jets</u>
 - if **b** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply efficiency
 - if **c** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply **c-mistag rate**
 - if **u,d,s,g** parton is found in a cone ΔR w.r.t jet direction
 - → apply light-mistag rate

b-tag flag is then stored in the jet collection

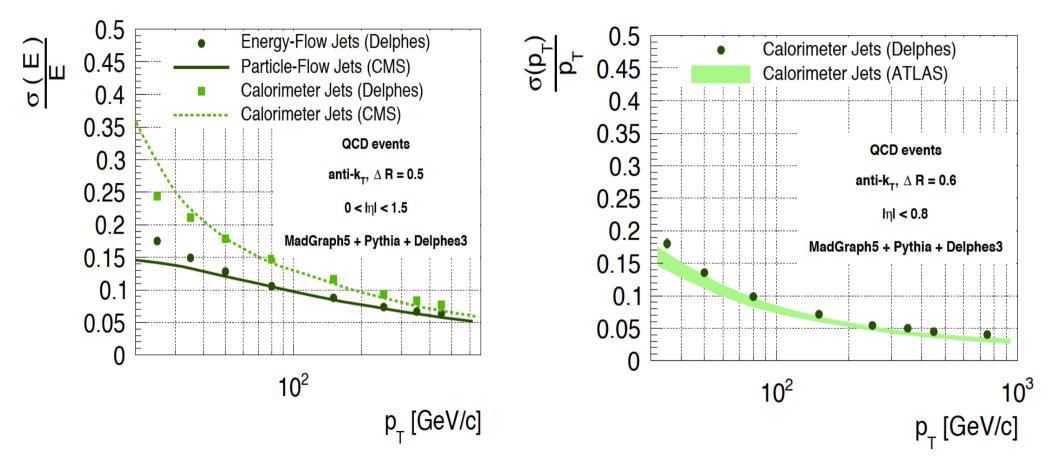
- <u>tau-jets</u>
 - if tau lepton is found in a cone ΔR w.r.t jet direction \rightarrow apply **efficiency**
 - else
 - → apply tau-mistag rate

tau jets have their own collection (no leptonic tau decays)


can define p_T and η dependent efficiency and mistag rate

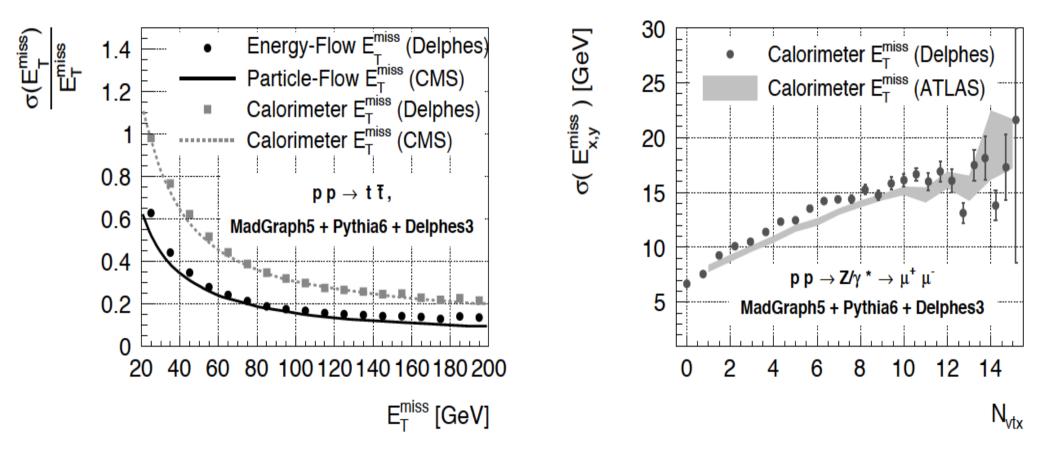
Validation

Validation: electrons and muons



\rightarrow excellent agreement

Validation: jets

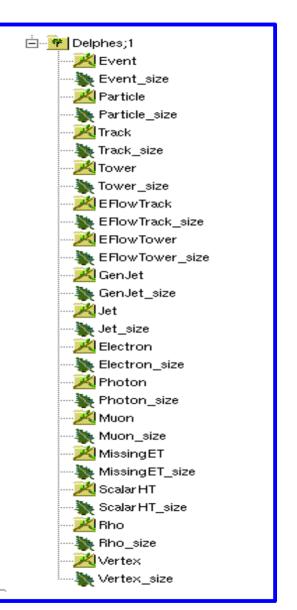


\rightarrow good agreement

Validation: E_T miss

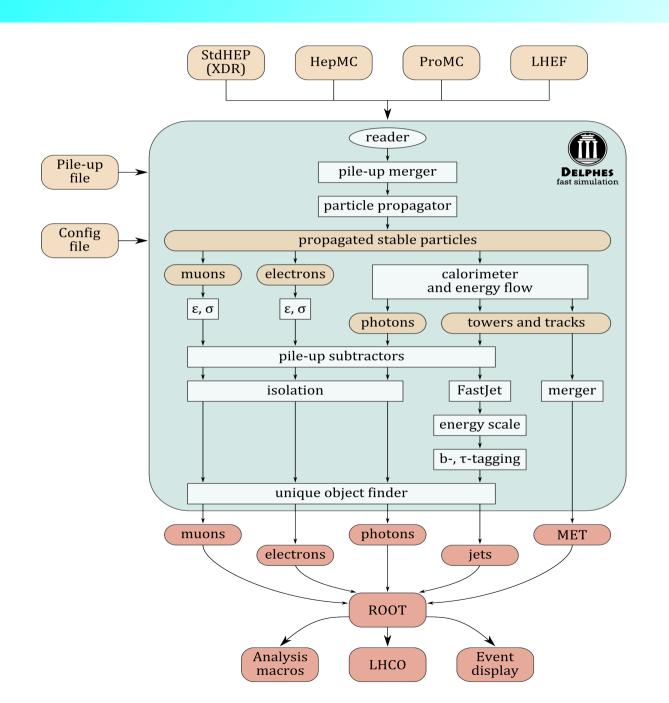
\rightarrow excellent agreement

Technical features



Technical features

- modular C++ code, uses ROOT classes
- Input
 - Pythia/Herwig output (HepMC,STDHEP)
 - LHE (MadGraph/MadEvent)
 - ProMC
- Output
 - ROOT trees
- Configuration file
 - define geometry
 - resolution/reconstruction/selection criteria
 - output object collections


default **CMS** and **ATLAS** configurations are included in any Delphes release ¹⁹

Modularity in action

When and when not DELPHES?

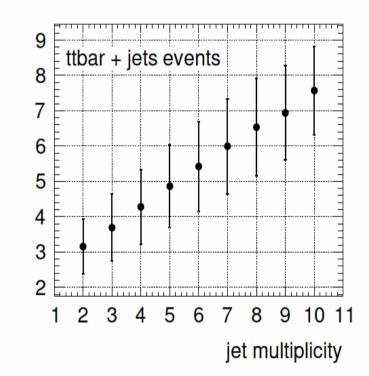
- When do you need Delphes?
 - \rightarrow more advanced than parton-level studies
 - \rightarrow testing analysis methods (multivariate/Matrix Element)
 - \rightarrow test your model (CheckMATE)
 - \rightarrow scan big parameter space (SUSY-like)
 - → preliminary tests of new geometries/resolutions (upgrades, Snowmass)
 - \rightarrow educational purpose (bachelor/master thesis)
- When not to use Delphes?
 - \rightarrow high precision studies
 - \rightarrow very exotic topologies (heavy stable charged particles)
 - \rightarrow study is sensitive to tails

Why use DELPHES for ME studies?

speed

- event generation 1ms 10s
- reconstruction 1 ms (0 PU) 1 s (150 PU)
- ME calculation 1s 100s

 \rightarrow bottleneck is ME


simple/flexible

- reconstructed objects contain reference to their parton-level counterpart
 - \rightarrow very easy to build transfer functions
- modular structure easily allows to alter
 → work-flow, output tree, reconstruction algorithms

reliable

- well validated and tested software

- Top-squark search with MEM, ZPW 2014 Monte Carlo Simulation, (Artoisenet)
- Unravelling ttH via the Matrix Element Method, Phys.Rev.Lett. 111 (2013) 091802 (Artoisenet, de Aquino, Maltoni, Mattelaer)
- Determination of differential cross sections from t anti-t fully leptonic, using the matrix element method, Nuovo Cim. C035N3 (2012) 229-232 (Pin, Mattelaer)
- Top B Physics at the LHC, Phys.Rev.Lett. 110 (2013) 232002 (Gedalia, Isidori, Maltoni, Perez, M.S., Soreq)
- The automated matrix element methods and its applications at LHC, ACAT2013 Workshop (Mertens)

Conclusions

- Delphes 3 has been out for one year now, with major improvements:
 - modularity
 - pile-up implementation
 - revamped particle flow algorithm
 - new visualization tool based on ROOT EVE
 - default cards giving results on par with published performance from LHC experiments
 - now fully integrated within MadGraph5
- Delphes is a great tool for preliminary MEM studies
- Delphes 2 is no longer supported!!
- Test it, and give us feedback!

the community ...

B