ZPW 2014 Monte Carlo Simulation \& 2nd Mini-Workshop on Advances in the Matrix Element Methods - January 82014

Mathias Ritzmann
Nikhef

Towards LHC

Phenomenology with Vincia

work in collaboration with D.A. Kosower, P. Skands

Vincia Inventors:W. Giele, D.A. Kosower, P. Skands

Further work on Vincia:A. Gehrmann-De Ridder, L. Hartgring, E. Laenen, A. Larkoski, J.J. Lopez-Villarejo, MR

Overview

motivation \& basics
spotlight on recoil
summary and outlook

Context

there are several widely used and actively developed event generators with one or more parton shower modules:

Sherpa
S. Schumann, F. Krauss 0709.I 027
J.-C.Winter, F. Krauss 0712.3913

Herwig
M. Bähr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada,
S. Plätzer, P. Richardson, M.H. Seymour, A. Sherstnev, B.R.Webber 0803.0883
S. Plätzer, S. Gieseke II09.6256

Pythia
T. Sjöstrand, S. Mrenna, P. Skands 07I0.3820
next two slides: why add another one?

The Vincia Parton Shower

W. Giele, D.A. Kosower, P. Skands
0707.3652, II 02.2 I 26

is a plugin to Pythia $8^{[1]}$
does efficient matching to fixed-order
estimates its uncertainty comprehensively

(and can do error bands)

is fully functional for $\mathrm{e}^{+}-\mathrm{e}^{-}$collisions
[I] T. Sjöstrand, S. Mrenna, P. Skands

Matching

general idea: the parton shower is the phase space generator
unweighted events matched to several consecutive tree-level matrix elements, no sample merging step
can use identified helicities to avoid the evaluation of helicity-summed matrix elements
A. Larkoski, JJ. Lopez-Villarejo, P. Skands
1301. 0933
extension to one-loop matching started ($Z \rightarrow 3$ jets)
(still directly producing unweighted events)
L. Hartgring, E. Laenen, P. Skands

Basics of Vincia

based on $2 \rightarrow 3$ splittings, as pioneered by Ariadne ${ }^{[1]}$
interference between emitters taken into account by construction (at leading colour)

[I] G. Gustafson, U. Pettersson Nucl.Phys.B306:746,1988

Basics of Vincia

based on $2 \rightarrow 3$ splittings, as pioneered by Ariadne ${ }^{[1]}$
interference between emitters taken into account by construction (at leading colour)
related to antenna subtraction ${ }^{[2,3, \ldots]}$
[2] A. Gehrmann-De Ridder, T. Gehrmann, E.W. N. Glover hep-ph/0505III
[3] A. Daleo, T. Gehrmann, D. Maître

Basics of Vincia

use exact $2 \rightarrow 3$ factorization (same type as dipole factorization)
3 post-branching momenta

$$
\int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} \mathrm{~d} \Phi_{2 \rightarrow n+1}=\underbrace{\int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{\mathrm{~d} x_{B}}{x_{B}} \mathrm{~d} \Phi_{2 \rightarrow n}}_{\text {as in } \mathrm{d} \sigma_{2 \rightarrow n}} \mathrm{~d} \Phi_{\mathrm{ant}}^{\downarrow}
$$

three types according to where the radiators are:
final-final (carries over from $\mathrm{e}^{+}-\mathrm{e}^{-}$)
initial-final
initial-initial

Basics of Vincia

specify algorithm by probability Δ that an antenna does not branch when evolving between two scales

$$
\begin{gathered}
\Delta\left(Q_{\text {start }}, Q_{\text {branch }}\right)=\exp \left[-\mathcal{A}\left(Q_{\text {start }}, Q_{\text {branch }}\right)\right] \\
\mathcal{A}\left(Q_{\text {start }}, Q_{\text {branch }}\right)=\int_{Q_{\text {branch }}}^{Q_{\text {start }}} a_{c} \frac{f_{a}\left(x_{a}, Q\right)}{f_{A}\left(x_{A}, Q\right)} \frac{f_{b}\left(x_{b}, Q\right)}{f_{B}\left(x_{B}, Q\right)} d \Phi_{\mathrm{ant}} \\
\uparrow=Q\left(\{p\}_{\text {ant }}\right) \\
\uparrow \\
\begin{array}{c}
\text { resolution measure } \\
\text { several choices implemented for } \mathrm{e}^{+}-\mathrm{e}^{-}
\end{array} \\
\begin{array}{c}
\text { unifies splitting functions \& soft eikonal factors } \\
\text { in } G G G \text { terms: sub-antenna function }
\end{array}
\end{gathered}
$$

Recoil in Initial-Initial Branchings

generate daughter invariants $s_{a j}, s_{j b}$
construct momenta with $p_{a}-p_{j}+p_{b}=p_{A}+p_{B}$
boost to align p_{a}, p_{b} with the beams
$\Rightarrow R$ gets recoil (e. g. Z gets p_{\perp})

Recoil in Initial-Initial Branchings

 daughter invariants don't fix the momenta\Rightarrow need to fix a mapping (\equiv recoil strategy)

$$
\begin{aligned}
p_{A}= & f_{1} p_{a}-f_{2} p_{j}+f_{3} p_{b} \\
p_{B}= & \left(I-f_{1}\right) p_{a}-\left(I-f_{2}\right) p_{j}+\left(I-f_{3}\right) p_{b} \\
& \left(f_{i}=f_{i}\left(s_{a j}, s_{j b}, s_{a b}\right)\right) \\
& p_{A}^{2}=p_{B}^{2}=0 \Rightarrow \text { one free parameter }\left(\text { select } f_{2}\right)
\end{aligned}
$$

collinear limits: $p_{A} \xrightarrow{p_{j} \rightarrow z p_{a}}(I-z) p_{a}$ is not automatic \Rightarrow need to impose $f_{2} \xrightarrow{j \| a / b} \mathrm{I} / 2$
(antenna subtraction has $f_{2} \equiv 1 / 2$)

Recoil in Initial-Initial Branchings

explicit factorization

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} \mathrm{~d} \Phi_{2}(a, b \rightarrow j, R)= \\
& \quad \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{\mathrm{~d} x_{b}}{x_{b}} \frac{1}{8 \pi} \frac{1}{s_{a b}} \mathrm{~d} s_{a j} \mathrm{~d} s_{j b} \delta\left(s_{a b}-s_{a j}-s_{j b}-m_{R}^{2}\right) \frac{\mathrm{d} \phi}{2 \pi}
\end{aligned}
$$

change to $x_{A} \equiv r_{a} x_{a}, x_{B} \equiv r_{b} x_{b}$
$r_{y}=r_{y}\left(s_{a j}, s_{j b}, s_{a b}\right)$ equivalent to choice of f_{2}
defined such that $r_{a} r_{b}=\left(s_{a b}-s_{a j}-s_{j b}\right) / s_{a b} \equiv s_{A B} / s_{a b}$
split off $2 \rightarrow$ I phase space

Recoil in Initial-Initial Branchings

 explicit factorizationarrive at

$$
\begin{aligned}
\int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{\mathrm{~d} x_{B}}{x_{B}} & \overbrace{2 \pi \delta\left(s_{A B}-m_{R}^{2}\right)}^{\mathrm{d} \Phi_{1}(A, B \rightarrow R)} \\
& \underbrace{\frac{1}{16 \pi^{2}} \frac{s_{A B}}{s_{a b}^{2}} \theta\left(r_{a}-x_{A}\right) \theta\left(r_{b}-x_{B}\right) \mathrm{d} s_{a j} \mathrm{~d} s_{j b} \frac{\mathrm{~d} \phi}{2 \pi}}_{\mathrm{d} \Phi_{\mathrm{ant}}^{\mathrm{i}}}
\end{aligned}
$$

integration region depends on mapping

Recoil in Initial-Final Branchings

generate daughter invariants $s_{a j}, s_{j k}$
construct momenta with $p_{a}-p_{j}-p_{k}=p_{A}-p_{K}$
boost to align p_{a} with the beam (b stays)
$\Rightarrow R$ gets recoil

Recoil in Initial-Final Branchings

as before, write down general mapping

$$
\begin{aligned}
p_{A}= & f_{1} p_{a}-f_{2} p_{j}-f_{3} p_{k} \\
p_{K}= & \left(I-f_{1}\right) p_{a}-\left(I-f_{2}\right) p_{j}-\left(I-f_{3}\right) p_{k} \\
& \text { antenna/dipole subtraction: } f_{2} \equiv 0 \Leftrightarrow p_{a} \| p_{A}
\end{aligned}
$$

due to initial-final kinematics, requiring that every physical $2 \rightarrow 3$ point corresponds to a physical $2 \rightarrow 2$ point restricts the choice of the mapping substantially (e.g. rules out crossing of final-final mapping)

Recoil in Initial-Final Branchings

explicit factorization

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{a}}{x_{a}} \mathrm{~d} \Phi_{3}(a, b \rightarrow j, k, R)= \\
& \quad \int \frac{\mathrm{d} x_{a}}{x_{a}} \frac{1}{s_{a b}} \frac{1}{256 \pi^{3}}\left(\frac{2}{\pi} \frac{\mathrm{~d} s_{A K} \mathrm{~d} s_{a j b} \mathrm{~d} s_{a j} \mathrm{~d} s_{j k}}{\sqrt{-\Delta_{4}}}\right) \frac{\mathrm{d} \phi}{2 \pi}
\end{aligned}
$$

change from x_{a} to x_{A} using $p_{A}=f_{1} p_{a}-f_{2} p_{j}-f_{3} p_{k}$
observe $\left(-\Delta_{4}\right)=s_{A K}^{2} /\left(f_{1}-f_{2}\right)^{2}\left(s_{a j b}^{\max }-s_{a j b}\right)\left(s_{a j b}-s_{a j b}^{\min }\right)$

$$
\begin{aligned}
& s_{A K}=-\left(p_{a}-p_{j}-p_{k}\right)^{2} \\
& s_{a j b}=\left(p_{a}-p_{j}+p_{b}\right)^{2}
\end{aligned}
$$

Δ_{4} : Gram determinant

Recoil in Initial-Final Branchings

explicit factorization

arrive at

$$
\begin{aligned}
& \int \frac{\mathrm{d} x_{A}}{x_{A}} \frac{\mathrm{l}}{8 \pi} \frac{\mathrm{l}}{s_{A b}} \mathrm{~d} s_{A K} \frac{\mathrm{~d} \phi}{2 \pi} \\
& \qquad\left[\frac{1}{16 \pi^{2}} \frac{s_{A b}^{2}}{s_{a b}^{2}} \frac{1}{s_{A K}} d s_{a j} \mathrm{~d} s_{j k}\left(\frac{1}{\pi} \frac{\mathrm{~d} s_{a j b}}{\sqrt{s_{a j b}^{\max }-s_{a j b}} \sqrt{s_{a j b}-s_{a j b}^{\min }}}\right)\right] \\
& x_{a}=x_{a}\left(s_{a j}, s_{j k}, s_{a j b}\right)
\end{aligned}
$$

note: $x_{A}<x_{a} \forall p_{a}, p_{j}, p_{k}$ not true for arbitrary mappings
f_{2} found have : $f_{2} \leq 0, f_{2} \xrightarrow{s_{j} \rightarrow 0} 0, f_{2} \xrightarrow{s_{o k} \rightarrow 0} 0$

Recoil for Initial-Final branchings

Dependence of $Z_{p_{\perp}}$ on recoil strategy (mapping)

Recoil for Initial-Final branchings

Dependence of $Z_{\perp \perp}$ on recoil strategy (mapping)

Boost Effect in Initial-Final

example configuration with $s_{a j b}=s_{a j b}^{\min }\left(s_{a j}, s_{j b}, \ldots\right)$

$$
x_{a} / x_{A} \approx 1.9, \quad p_{\perp}\left(R^{\prime}\right) / p_{\perp}(R) \approx 0.83
$$

Boost Effect in Initial-Final

same example configuration but with $s_{a j b}=s_{a j b}^{\max }\left(s_{a j}, s_{j b}, \ldots\right)$

$$
x_{a} / x_{A} \approx 4.8, \quad p_{\perp}\left(R^{\prime}\right) / p_{\perp}(R) \approx I .| |
$$

pdf suppression \Rightarrow much more likely to shrink P_{\perp}

Summary \& Outlook

Vincia has been extended to hadron collisions
still to do: alternative Q definitions, some validation (in particular interplay with Pythia 8), ...
afterwards: carry over matching

Thanks

Backup - Uncertainty Bands

The veto algorithm

generate trial scales Q by inverting Δ_{t} (which has been chosen such that this inversion is simple)

$$
\Delta_{\mathrm{t}}\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{b}}^{2}\right) \equiv P\left[\text { no trial branching between } Q_{\mathrm{s}} \text { and } Q_{\mathrm{b}}\right]
$$

$$
\begin{aligned}
& =\exp \left[-\int_{Q_{b}^{2}}^{Q_{s}^{2}} a_{t}\left(Q^{2}\right) \mathrm{d} Q^{2}\right] \\
Q_{s} & \equiv Q_{\text {start }}, \quad Q_{b} \equiv Q_{\text {branch }}
\end{aligned}
$$

accept a trial with probability $\mathrm{a}_{\mathrm{p}(\text { hysical })} / \mathrm{a}_{\mathrm{t}(\text { (rial })}$
continue at scale of rejected trial

The veto algorithm

what is the resulting non-branching probability?

$$
\begin{gathered}
\Delta\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{b}}^{2}\right)=\sum_{k=0}^{\infty} P[\mathrm{k} \text { rejected trials }]=\sum_{k=0}^{\infty} p_{k} \\
P_{\mathrm{k}}=\int_{Q_{\mathrm{b}}^{2}}^{Q_{\mathrm{s}}^{2}} \overbrace{\Delta_{\mathrm{t}}\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{l}}^{2}\right) a_{\mathrm{t}}\left(Q_{\mathrm{l}}^{2}\right)}^{\text {trial density }} \overbrace{\left(I-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{\mathrm{l}}^{2}\right)}^{\text {reject probability }} \ldots \\
\Delta_{\mathrm{t}}\left(Q_{\mathrm{k}-1}^{2}, Q_{\mathrm{k}}^{2}\right) a_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}\right)\left(I-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{\mathrm{k}}^{2}\right) \Delta_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}, Q_{\mathrm{b}}^{2}\right) \\
\\
\theta\left(Q_{\mathrm{l}}^{2}>\ldots>Q_{\mathrm{k}}^{2}\right) \mathrm{d} Q_{\jmath}^{2} \ldots \mathrm{~d} Q_{\mathrm{k}}^{2}
\end{gathered}
$$

The veto algorithm

what is the resulting non-branching probability?

$$
\begin{gathered}
\Delta\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{b}}^{2}\right)=\sum_{k=0}^{\infty} P[\mathrm{k} \text { rejected trials }]=\sum_{k=0}^{\infty} p_{k} \\
P_{k}=\int_{Q_{\mathrm{b}}^{2}}^{Q_{\mathrm{s}}^{2}} \Delta_{\mathrm{t}}\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{l}}^{2}\right) a_{\mathrm{t}}\left(Q_{\mathrm{l}}^{2}\right)\left(1-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{\mathrm{l}}^{2}\right) \ldots \\
\Delta_{\mathrm{t}}\left(Q_{k-1}^{2}, Q_{\mathrm{k}}^{2}\right) a_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}\right)\left(1-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{\mathrm{k}}^{2}\right) \Delta_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}, Q_{\mathrm{b}}^{2}\right) \\
\\
\theta\left(Q_{l}^{2}>\ldots>Q_{k}^{2}\right) \mathrm{d} Q_{\jmath}^{2} \ldots \mathrm{~d} Q_{\mathrm{k}}^{2}
\end{gathered}
$$

The veto algorithm

what is the resulting non-branching probability?

$$
\begin{aligned}
& \Delta\left(Q_{s}^{2}, Q_{b}^{2}\right)= \sum_{k=0}^{\infty} P[k \text { rejected trials }]=\sum_{k=0}^{\infty} p_{k} \\
& p_{k}=\Delta_{t}\left(Q_{s}^{2}, Q_{b}^{2}\right) \int_{Q_{b}^{2}}^{Q_{s}^{2}} \prod_{i=1}^{k}\left[a_{t}\left(Q_{i}^{2}\right)-a_{p}\left(Q_{i}^{2}\right)\right] \\
& \theta\left(Q_{l}^{2}>\ldots>Q_{k}^{2}\right) d Q_{l}^{2} \ldots d Q_{k}^{2}
\end{aligned}
$$

The veto algorithm

what is the resulting non-branching probability?

$$
\begin{aligned}
& \Delta\left(Q_{s}^{2}, Q_{b}^{2}\right)=\sum_{k=0}^{\infty} P[k \text { rejected trials }]=\sum_{k=0}^{\infty} p_{k} \\
& p_{k}=\Delta_{t}\left(Q_{s}^{2}, Q_{b}^{2}\right) \frac{1}{k!}\left[\int_{Q_{b}^{2}}^{Q_{s}^{2}} a_{t}\left(Q^{2}\right)-a_{p}\left(Q^{2}\right)\right]^{k} \\
& \Delta_{t}\left(Q_{s}^{2}, Q_{b}^{2}\right)=\exp \left[-\int_{Q_{b}^{2}}^{Q_{s}^{2}} a_{t}\left(Q^{2}\right) d Q^{2}\right] \\
& \Rightarrow \sum p_{k}=\exp \left[-\int_{Q_{b}^{2}}^{Q_{s}^{2}} a_{p}\left(Q^{2}\right)\right]
\end{aligned}
$$

Uncertainties

produce weighted set for $a_{\mathrm{v} \text { (ariant) }}$

$$
\begin{aligned}
& \text { accept } \rightarrow w=w \cdot a_{\mathrm{v}} / a_{\mathrm{p}}, \quad \text { reject } \rightarrow w=w \cdot \frac{\mathrm{l}-a_{\mathrm{v}} / a_{\mathrm{t}}}{\mathrm{l}-a_{\mathrm{p}} / a_{\mathrm{t}}} \\
& \Delta_{\mathrm{v}}\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{b}}^{2}\right)=\sum_{k=0}^{\infty} p_{k} w_{k}
\end{aligned}
$$

$$
p_{k} w_{k}=\int_{Q_{b}^{2}}^{Q_{s}^{2}} \overbrace{\Delta_{t}\left(Q_{s}^{2}, Q_{1}^{2}\right) a_{t}\left(Q_{1}^{2}\right)}^{\text {trial density }} \overbrace{\left(I-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{\mathrm{l}}^{2}\right)}^{\text {reject probability }} \overbrace{\frac{\|-a_{\mathrm{v}} / a_{\mathrm{t}}}{1-a_{\mathrm{p}} / a_{\mathrm{t}}}\left(Q_{\|}^{2}\right)}^{\text {weight }}
$$

$$
\text { (same for } \left.Q_{2}, \ldots, Q_{k}\right)
$$

$$
\Delta_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}, Q_{\mathrm{b}}^{2}\right) \theta\left(Q_{\mathrm{l}}^{2}>\ldots>Q_{\mathrm{k}}^{2}\right) \mathrm{d} Q_{1}^{2} \ldots \mathrm{~d} Q_{\mathrm{k}}^{2}
$$

Uncertainties

produce weighted set for $a_{\mathrm{v} \text { (ariant) }}$

$$
\begin{aligned}
& \text { accept } \rightarrow w=w \cdot a_{v} / a_{p}, \quad \text { reject } \rightarrow w=w \cdot \frac{\mathrm{l}-a_{\mathrm{v}} / a_{\mathrm{t}}}{\mathrm{l}-a_{\mathrm{p}} / a_{\mathrm{t}}} \\
& \Delta_{\mathrm{v}}\left(Q_{\mathrm{s}}^{2}, Q_{\mathrm{b}}^{2}\right)=\sum_{k=0}^{\infty} p_{k} w_{k} \\
& p_{k} w_{k}=\int_{Q_{b}^{2}}^{Q_{s}^{2}} \overbrace{\Delta_{t}\left(Q_{s}^{2}, Q_{l}^{2}\right) a_{t}\left(Q_{l}^{2}\right)}^{\text {trial density }} \overbrace{\left(1-a_{\mathrm{p}} / a_{\mathrm{t}}\right)\left(Q_{l}^{2}\right)}^{\text {reject probabinty }} \overbrace{\frac{\|-a_{v} / a_{\mathrm{t}}}{\|-a_{p} / a_{\mathrm{t}}}\left(Q_{l}^{2}\right)}^{\text {weight }} \\
& \text { (same for } Q_{2}, \ldots, Q_{k} \text {) } \\
& \Delta_{\mathrm{t}}\left(Q_{\mathrm{k}}^{2}, Q_{\mathrm{b}}^{2}\right) \theta\left(Q_{\mathrm{l}}^{2}>\ldots>Q_{k}^{2}\right) \mathrm{d} Q_{l}^{2} \ldots \mathrm{~d} Q_{\mathrm{k}}^{2} \\
& \text { derivation as before } \Rightarrow \Delta_{\mathrm{v}}=\exp \left[-\int_{Q_{b}^{2}}^{Q_{\mathrm{s}}^{2}} a_{\mathrm{v}}\left(Q^{2}\right)\right]
\end{aligned}
$$

Uncertainties - Fine Print

derivation independent of $a_{\mathrm{p}} / a_{\mathrm{t}}$, but $w \xrightarrow{a_{\mathrm{p}} \rightarrow a_{\mathrm{t}}} \infty$
far down in the shower cascade, we may lack the statistics to realize the cancellation
\Rightarrow in practice, restrict range of weights (artificially)
only most, not all uncertainties can be accessed in this way

Uncertainties - Test

Drell-Yan ${ }^{[1]}$ in Pythia $8.176+$ Vincia

[I] pure parton shower

