A Practitioner's View

2nd MEM Workhop | Zurich | Switzerland · January 9, 2014

Patrick Rieck · Oliver Maria Kind · Thomas Lohse · Sören Stamm rieck@physik.hu-berlin.de

Institut für Physik Humboldt-Universität zu Berlin Germany

Importance of the MEM Role in HEP Analyses

Maximum Significance

Likelihood-ratio as most powerful test statistic for simple hypothesis tests:

 ^f(x|H₁)
 _f(x|H₀) > k_α

Analysis Approaches

Туре	Discriminant	Usage
Integration	$\int_{\Omega} d\Phi f(\Phi)$	Choose an appropriate region Ω , cut and count
Marginalization	$rac{\mathrm{d}f}{\mathrm{d}y} = \int \mathrm{d}\Phi f(\Phi) \delta(y - g(\Phi))$	Choose an appropriate function <i>g</i> , e.g. from multivariate analysis
Approximation	$\int \mathrm{d}\Phi \tfrac{1}{\sigma} \tfrac{\mathrm{d}\sigma}{\mathrm{d}\Phi} W(x \Phi)$	Simplified computation of the p.d.f., known as matrix element method

Importance of the MEM

Advantages and Disadvantages

Advantages

- It makes sense
 - Using complete event information
 - Not based on a particular MC simulation

It's flexible

- Searches
- Parameter estimations
- Decay reconstruction

It's powerful

- High discriminating power
- Sensitivity to signal and background
- Impact of systematics at least as good as for MVAs

Disadvantages

POLDT

Σ

- Most existing packages analysis specific
- It's slow ⇒ Need to speed up computations

Importance of the MEM

Advantages and Disadvantages

Advantages

- It makes sense
 - Using complete event information
 - Not based on a particular MC simulation
- It's flexible
 - Searches
 - Parameter estimations
 - Decay reconstruction
- It's powerful
 - High discriminating power
 - Sensitivity to signal and background
 - Impact of systematics at least as good as for MVAs
 - So far only few MEM-based analyses at the LHC
 - MEM needed in order to reach quality of certain Tevatron analyses

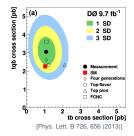
Disadvantages

- Most existing packages analysis specific
- It's slow ⇒ Need to speed up computations

Importance of the MEM

Advantages and Disadvantages

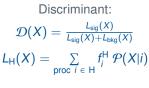
Advantages

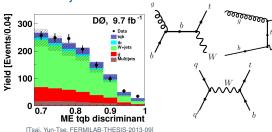

- It makes sense
 - Using complete event information
 - Not based on a particular MC simulation
- It's flexible
 - Searches
 - Parameter estimations
 - Decay reconstruction
- It's powerful
 - High discriminating power
 - Sensitivity to signal and background
 - Impact of systematics at least as good as for MVAs

Disadvantages

POLDT

Σ


- Most existing packages analysis specific
- It's slow ⇒ Need to speed up computations


- So far only few MEM-based analyses at the LHC
- MEM needed in order to reach quality of certain Tevatron analyses
- Recent example: evidence for single-top production in the s-channel

MEM for Analyses at the LHC Single-Top Physics

- Production of single top-quarks by EW interactions, access to |V_{tb}|, polarized top-quarks
- Dealing with large backgrounds tt, W + jets
- Achieved cross section measurements:
 - Tevatron : s- and t-channel simultaneously
 - LHC : t- and Wt-channel
- MEM as vital part of Tevatron analyses

 $\begin{array}{l} X = \text{measured event,} \\ f_i^{\text{H}} = \text{event fraction of process } i \\ \text{given hypothesis H} \end{array}$

Development from scratch

- Could use MadWeight in principle, however version 4 was not fast enough
- Need flexiblity for adjustments (see below)

$$\mathcal{P}(X) = rac{1}{arepsilon\sigma} \sum_{
ho \ \in \ ext{permutations}} \int \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\Phi \sum_{i,j} rac{f_i(x_1)f_j(x_2)}{2x_1x_2s_{ ext{had}}} |\mathcal{M}_{i,j}|^2 W_{
ho}(X|\Phi)$$

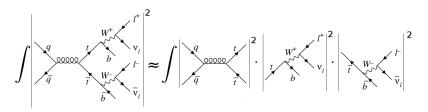
- Integrate and sum up each jet-parton assignment
- Sum up initial states for each integrand
- ▶ PDFs *f_i*, *f_j* from LHAPDF (version 5)
- ► Amplitudes |*M*_{*i*,*j*}|² from MCFM or MadGraph
- Transfer functions W_p involve efficiencies
- MC integration using VEGAS (CUBA implementation)
- Effective treatment of QCD radiation in progress (transverse boosts)

MEM for Analyses at the LHC Implementation

- C++ code using ROOT
- Several processes available: single top s, t and Wt-channel, tt̄, W + 2/3 jets, W + bb̄(+jet)
- Specific phase space generation for these processes, allowing for different jet multiplicities
- Simple I/O using customizable ROOT trees
- Easy to extend using inheritance from base classes for:
 - Processes
 - Phase space generators
 - Transfer functions
- Easy to use
 - Likelihood computation and I/O setup using simple ROOT C-scripts (see next slide)

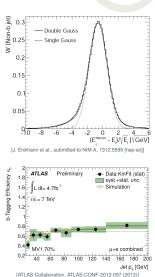
MEM for Analyses at the LHC Example Configuration

Run Script:


```
MemMar * mar = new MemMar;
mgr->SetCollider (MemMgr::kPP, 8000.);
mar->SetPdfMar("ctea66"):
MemTFcnSet *tfcnATLAS = new MemTFcnSet(MemTFcnAtlasBase::kMC12):
MemProcSqTop tChannel 2jets *procSqTop =
    new MemProcSgTop tChannel 2jets("tChannel", "SgTop_t-channel", 172.5);
procSqTop -> GetMCMqr() -> SetEpsRel(0.05);
procSaTop->SetTFcnSet(tfcnATLAS):
mgr->AddProcess(procSgTop_tChannel);
mgr->SetEvtReader(new MemEvtReaderGeneric):
mgr->SetInputTreeName("t mem");
mgr->AddInputFile("myMemInput.root");
mgr->SetEvtWriter(new MemEvtWriterGeneric);
mgr->SetOutputFile("MyMemOutput.root");
mar->SetOutputTree("t IIh", "MEM_Likelihodd_Tree");
mgr \rightarrow Run();
```

- Using MCFM amplitudes
 - Fast computations, e.g. single-top s-channel: gain factor of 2 compared to MadGraph
 - 2. Computing all initial states simultaneously
 - 3. Flexibility due to different types of amplitudes, e.g.
 - 4- or 5-flavour scheme for single-top
 - Neglecting spin correlations for tt

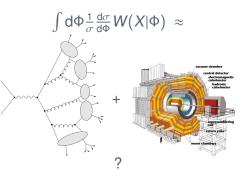
5 flavour scheme $(bq \rightarrow tq')$ 4 flavour scheme $(gq \rightarrow tbq')$



- Double Gaussian TFcns for e, μ and jetenergies, matching to LO parton level
- Fixing all angles, fixed e and μ-energies optionally
- ► Use 𝔼t and φ_{𝔅t} TFcns, matched to neutrino transverse momentum
- Incorporating reconstruction efficiencies
 - Single object TFcn:

 $W(\mathbf{p^{reco}} | \mathbf{p^{true}}) = \\ \varepsilon(\mathbf{p^{true}}) \cdot \text{DoubleGaussian}(\mathbf{p^{reco}} | \mathbf{p^{true}})$

- Reconstruction and b-tag efficiencies
- I − ε(p^{true}) for objects not reconstructed

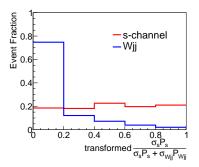

Goodness of P.D.F. Approximation

- MEM: simple approximation of highly non-trivial p.d.f.
- Estimating goodness of approximation e.g. by
- 1. Checking marginalizations of MEM likelihood:
 - Analytic integration of a subset of final state objects
 - Numerical evaluation of marginalizations
 - Comparison to full MC
- 2. Comparing MEM likelihood from full simulation with toy MC (next slide)

e.g. lepton
$$p_{\mathsf{T}}$$
 marginalization:

$$\frac{\mathrm{d}N}{\mathrm{d}p_{\mathsf{T}}^{\mathsf{lep}}} = \int \int \mathrm{d}\Phi \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi} W(X|\Phi) \prod_{i}^{i \neq \mathsf{lep}} \mathrm{d}^{3}p_{i} \mathrm{d}\vartheta_{\mathsf{lep}} \mathrm{d}\varphi_{\mathsf{lep}}$$

$$= \int \mathrm{d}\Phi \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Phi} \varepsilon(X|\Phi) W_{\mathsf{lep}}(p_{\mathsf{T}}^{\mathsf{lep},\mathsf{reco}}|p_{\mathsf{T}}^{\mathsf{lep},\mathsf{true}})$$

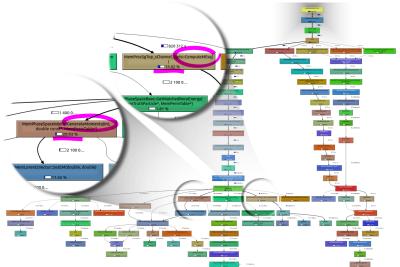

20

Parton Level Comparison

Results on parton level

- Analyse single-top s-channel vs. W+2 jets
- Compare results with full MC simulation
- LO event generation using MadEvent, application of transfer functions
 - Smearing of momenta
 - Event selection according to efficiencies
- 2. Computation of *s*-channel vs. W + 2 jets likelihood ratio

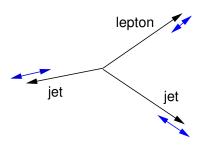
Likelihood ratio single-top s-Channel vs. W + 2 jets

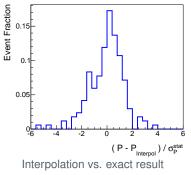

"transformed": transformation making the signal distribution flat

Means	Explanation	
Compilation	Compiler options and version	
Profiling	Examine program execution	
Reduction of permutations	Use <i>b</i> -tag information,	
neddellon of permutations	drop permutations with small contribution	
Symmetrization of $ \mathcal{M} ^2$	For decays like $W ightarrow qq, H ightarrow bar{b}$	
Symmetrization of proj	instead of permutations	
	Fast MCFM amplitudes,	
Fast amplitude code	no spin correlations (whenever reasonable),	
	narrow width approximation	
PDF caching	Faster than LHAPDF	
δ Functional TFcns	Simplifies integral (whenever reasonable)	
Phase space generation	Appropriate parameterization	
MC integration setup	Iteration frequency of importance sampling,	
	quasi-random vs. pseudo-random numbers	
Systematics estimation	During nominal computation (see below)	

MEM Speed-Up Profiling (Valgrind)

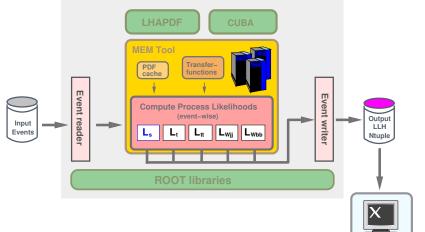
Practically spending most time computing likelihoods for systematic variations:


Туре	Abundance	Example	Re-Run MEM?
Scale factor	many	b-tagging efficiency	no
Modeling	few	QCD radiation	yes
4-Vector variations	many	jet energy scale	possibly not


- 4-vector variations: rescaling only magnitudes of momenta
 - ⇒ Can compute systematic likelihoods approximately from nominal computation, two ways:
 - 1. Taylor expansion of transfer function
 - 2. Computation of additional likelihoods during nominal computation (see next slide)

MEM Speed-Up Systematics Computations (ctd)

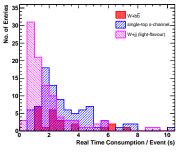
- Variation of nominal event and computation of likelihoods
- Interpolation of likelihoods
 - Using polynomial, 2nd order in energies of jets and leptons
- Reduction of computation time in case of
 - Low multiplicities (⇒ few variations)
 - Many systematics



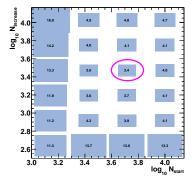
- High potential for improving analyses at the LHC
- Developing fast and flexible code
 - Easy to use
 - Easy to extend
- Significant improvement by incorporating efficiencies in transfer functions
- Ideas to test goodness of p.d.f. approximation
- Several means to speed up the MEM
- Open project, collaboration is welcome

Backup

MEM for Analyses at the LHC Workflow


Analysis

MEM for Analyses at the LHC MC Integration Setup



Further means to reduce computation time

- Different computation time for different processes
 ⇒ Focus efforts on major ones
- Investigation of computation time vs. importance sampling frequency

Computation time for different processes

Processing Time (s) vs VEGAS Parameters, Single-Top s-Channel

MEM Speed-Up Systematics Computations

Practically spending most time computing likelihoods for systematic variations:

- 4-vector variations: rescaling only magnitudes of momenta
 ⇒ Can compute systematic likelihoods approximately from nominal computation, two ways:
 - 1. Taylor expansion of transfer function

$$\begin{aligned} \mathcal{P}(X_{\text{sys}}) &\approx \mathcal{P}(X_{\text{nom}}) + \mathcal{P}'(X_{\text{nom}}) \cdot (X_{\text{sys}} - X_{\text{nom}}) \\ \left(\begin{array}{c} \mathcal{P}(X_{\text{sys}}) \\ \mathcal{P}'(X_{\text{nom}}) \end{array} \right) &= \int d\Phi \frac{1}{\sigma} \frac{d\sigma}{d\Phi} \left(\begin{array}{c} W(X \mid \Phi) \\ W'(X \mid \Phi) \end{array} \right) \end{aligned}$$

2. Computation of additional likelihoods during nominal computation, interpolation using a set of varied events:

$$\mathcal{P}(X) \approx \sum_{n_{\text{lep}}, n_{\text{jet1}}, n_{\text{jet2}} \in \mathbb{N}_{0}}^{n_{\text{lep}}+n_{\text{jet1}}+n_{\text{jet2}} \leq 2} c_{n_{\text{lep}},n_{\text{jet1}},n_{\text{jet2}}} E_{\text{lep}}^{n_{\text{jet1}}} E_{\text{jet1}}^{n_{\text{jet1}}} E_{\text{jet2}}^{n_{\text{jet1}}}$$