Status of the ELENA transfer lines

with special consideration of vacuum, hand-over optics and beam time distribution after 2017

W. Bartmann, D. Barna, J. Borburgh, R. Kersevan, S. Pasinelli, J.-F. Poncet, G. Vanbavinckhove

ADUC/ELENA Meeting, 14-15 January, 2014

Outline

- Optics
 - Beam envelope vs Good Field Region of HW
 - Optics for one line as example
- Status of the hardware
- Vacuum
- Beam distribution possibilities
- Schedule

Handover parameters *Aperture definition*

• Beam envelope:

$$\Sigma_{x,y}(95\%) = \sqrt{\beta_{x,y} \cdot \kappa_{x,y} \cdot \epsilon_{x,y} (95\%)} + D_{x,y} \cdot \kappa_{x,y} \cdot \frac{\delta p}{p} (95\%)$$
$$\kappa_{x,y} = 1.2$$

• Beam envelope at experiments:

$$\Sigma_{x,y}(95\%) = 1 - 2 mm$$

LNE04 – last part of ALPHA line

Line elements are set, a few details to finalize:

- Some quadrupoles seem reducable but help for operational adjustments of the beam size
- Place monitors in areas of low dispersion to measure clean profiles
- Complete error studies

LNE04 length= 8.075 m, σ_x^{exp} =+/-1.34 mm, σ_v^{exp} =+/-1.42 mm

Handover parameters

list of beam-sizes at the experiments

Experiment	$arsigma_{\chi}(95~\%)$ [mm]	$arsigma_y(95~\%)$ [mm]
BASE	2.0	1.7
ASACUSA1	1.9	1.0
ASACUSA2	2.0	2.0
ATRAP1	1.2	0.7
ATRAP2	1.9	1.2
ALPHA	1.3	1.4
AEGIS	1.9	1.1
GBAR	1.0	1.0

Handover parameters

Information available online

• For detailed and up-to-date parameters at handover points per experiment:

http://project-elena-optics.web.cern.ch/

- 6x6 sigma matrix
- Beam size
- Optics functions (β , α , D,...)
- Hand over locations

Electrostatic HW - Quadrupoles

Electrostatic HW – Fast Deflector

Electrostatic HW – Ion Switch

Electrostatic HW – Ion Switch

Electrostatic HW – Fast Deflector + Bend

Test system vacuum - simulation and measurements Riccardo Renzi, TE-VSC-IVM, Jan 2014

- System's geometry:
 - 3m-long DN100 stainless steel tube connected to a small dome housing the pressure gauges and other devices (valves)
- The pressure is measured via 3 different gauges
- Surface of 13,000 cm² and volume of 35 liters
- The specific outgassing rate is derived to be 6.5e-12 mbar*l/s/cm² (2x higher than usually assumed but this is what fits the data)

Test system vacuum – pump down curves

Without bake-out

- 1e-9 mbar
 With NEG 1e-11 mbar in the
- With NEG 1e-11 mbar in the same time

TL vacuum – pressure/pump time

- Vacuum pressure
 - Need ~1e-9 mbar for the beam
 - Close to the machine differential pumping

...this can be reached without NEG and bake-out if recovery time is of low importance!

- Pump-down time to reach 1e-9 mbar water pressure
 - Neither NEG nor bake-out: several weeks
 - Only bake-out: 24 h (50 kCHF)
 - Fully bakeable NEG coated lines: would reach in a 24 h bake-out cycle 1e-11 mbar or less (100 kCHF)

... strong dependence on the vacuum sectorisation

TL vacuum - sectorization

- Vacuum sectorization
 - More valves reduce the recovery time but ~ 10 kCHF per valve
 - Present assumption:
 - Each fast switch + bend unit is equipped with 3 valves → each experimental zone has its own vacuum sector to avoid cross talk
 - Valves at handover between line and experiment
 - Gives ~ 30 valves corresponding to 300 kCHF
 - Put additional valves in long sections if needed
- Probability of unplanned intervention with breaking the vacuum: less than once a year

Beam time distribution

- What changes from machine side with ELENA
 - Nominal scenario: 4 bunches in the machine
 - Fast deflector gives possibility to extract a single bunch out of the train while leaving the others in the machine → can split the same train between the two extractions
 - Also the full train can be extracted and separated into the different experiments' channels by fast deflectors in the lines
- Considering 6 users every 3 cycles an equal number of bunches can be distributed

User	Cycle 1	Cycle 2	Cycle 3
BASE	х	х	
ASACUSA	х	х	
ATRAP	х		x
ALPHA	х		x
AEGIS		х	x
GBAR		х	x

Beam time distribution

- Redistribution in case not all experiments require beam
 - If beam is required a request has to be set via control system
 - Manual control of beam destination in the beginning
 - Automatic re-distribution depending on number of users and bunches for later stage
 - Synchronisation signal to ensure correct timing is sent at beginning of cycle
 - Details of communication between controls/experiments to be clarified
- Could envisage H- beam in ELENA and TLs within the AD supercycle (setup of trajectory, transmission, timing,...)
 - Flexibility from machine and controls is given
- Security measure for experimental zone access while others take beam
 - Beam stoppers or interlock on bends
 - In case of interlock, e.g. push access door, the beam is dumped within the machine or LNI

Official planning – Installation dates by line

Line	Installation start	includes		
LNI	04/2015	Magnetic + electrostatic quadrupoles		
LNS	04/2015 ?	Ion switch, matching unit		
LNE00	09/2015	Fast deflector, matching unit		
LNE50	09/2015	Fast deflector, matching unit		
All other lines	12/2016	Fast deflector, matching unit, quadrupole unit, bend unit		
ELENIA TL status				

Official planning

Number of elements (incl spares)

Element	Total number	Of which ready by 06/2015
Quadrupoles electrostatic	100	15
Fast deflectors (incl. extraction)	10	2
Bends electrostatic	16	0
Correctors H/V	44	6
BPM	44	7
lon switch	1	1

Design to be finished in view of 2015 installation date, except for electrostatic bends

Status – Optics/Integration

- Line geometries fixed
- Integration of lines started
- Position of handover points to be finalized where not fully clear (GBAR, AEGIS, ASACUSA)
- Magnetic shielding to be studied

Status - Hardware

- Design of Fast Deflector, Quadrupoles and Ion Switch in final phase (completion foreseen by 05/2014)
- Ion switch being built in-house (long lead material already ordered); could be tested at Juelich in summer 2014
- Fast Deflector will be built in-house; parts procurement to start in 09/2014
- For Quadrupoles (incl. correctors)
 - Aim for contract to industry for element construction (tentatively 09/2014)
 - Order vacuum chambers separately (tentatively 09/2014)
 - Assure quadrupole assembly into vacuum chambers, cleaning and NEG coating at CERN (2015 -)
- Beam profile monitors (μ-wire monitor used in ASACUSA) taken care of by University of Tokyo collaboration (Masaki Hori) with BE-BI
 - Wire spacing to be defined by 04/2014

Conclusions

- Optics/Integration
 - Available online <u>http://project-elena-optics.web.cern.ch/</u>
 - Finalise BPM positions, error studies, integration, magnetic shielding
- HW design being finalised
- Vacuum
 - The pump-down time urges for a bake-out system (about 300 kCHF)
 - A pressure level of 1e-9 mbar can be reached without NEG and is sufficient for the beam in the lines is this pressure level also sufficient for the experiments?
 - NEG option: about 50 kCHF; manpower available from TE-VSC
 - Sectorizing the vacuum per experiment seems enough
 - Sector valves at each switch and handover point
- Schedule
 - Very tight
 - Need about 15% of equipment by 2015 ready for installation
 - Contract for non in-house equipment planned for 09/2014