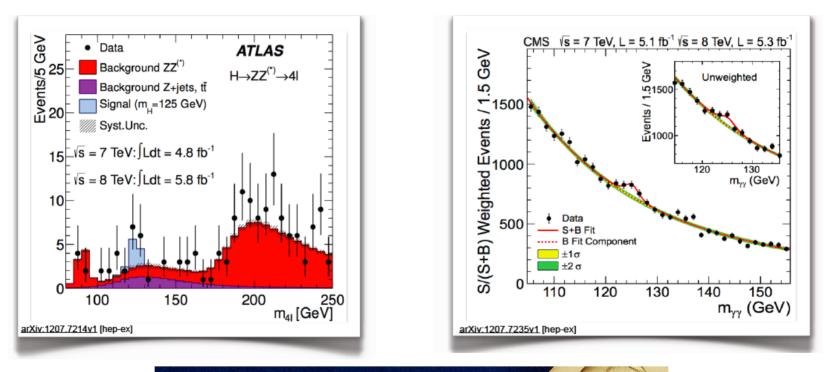
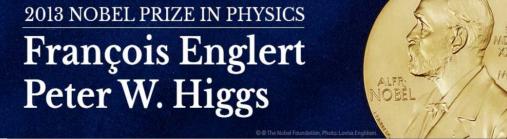
Future prospects in kaon physics: some remarks


<u>Gino Isidori</u> [*INFN - Frascati*]


Introduction

- The special role of kaons
- Selected rare decays (in the LHCb perspective)
- Probing more exotic scenarios
- Conclusions

Introduction

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

Introduction

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

Still, this theory suffers of a series of theoretical & cosmological problems:

- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["*flavor puzzle*"]
- → No explanation for the quantization of the U(1) charges [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter

The SM is likely to be an *effective theory*, or the low-energy limit of a more fundamental theory, with new degrees of freedom around or above the electroweak scale (i.e. around or above 1 TeV).

Introduction

After the discovery of a "Higgs-like" boson with mass around 126 GeV [*consistent with e.w. precision tests & stability bounds*], the SM couldn't be in better shape...

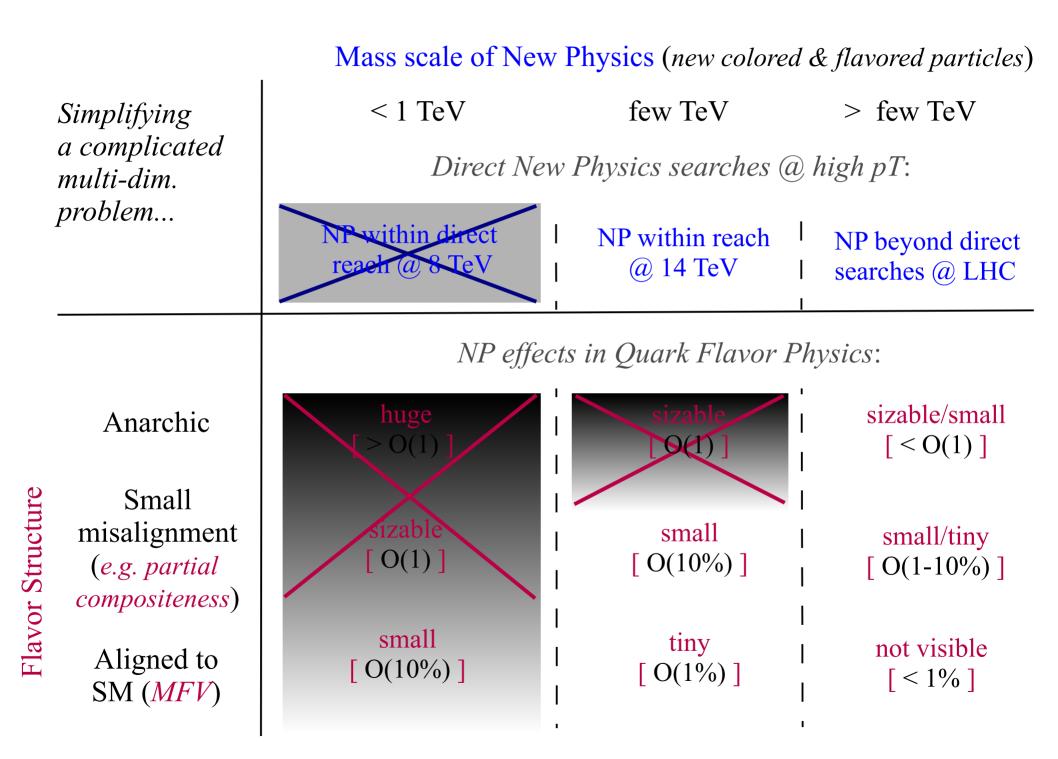
Still, this theory suffers of a series of theoretical & cosmological problems:

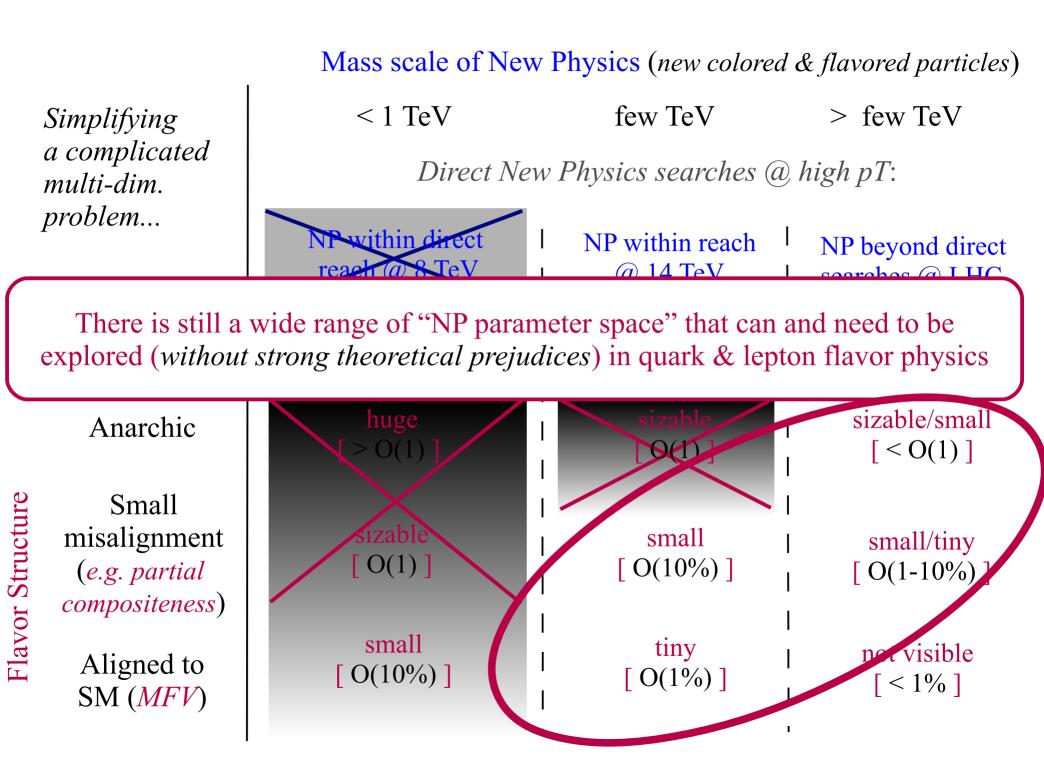
- Fine-tuning/UV sensitivity of the Higgs-mass term ["*hierarchy problem*"]
- Unexplained hierarchical structure of the Yukawa couplings ["flavor puzzle"]
- ➤ No explanation for the quantization of the U(1) charges [*hint of unification*?]
- Non coherent inclusion of gravity at the quantum level
- No good candidate for dark matter

The only (qualitative) indication of NP around 1 TeV:

$$\Delta m_{\rm h}^2 \sim \Lambda^2$$

The (relatively) small value of m_h^+ + compatibility of the h couplings with SM + absence of NP signals so far


NP is likely to be <u>weakly coupled</u> with a <u>non-negligible mass gap</u> (*hopefully not too large*..) between NP and SM degrees of freedom



Flavor physics is even more interesting that in the pre LHC8-era:

- we don't know the magnitude of this mass-gap
- we are not anymore forced to assume a MFV structure to accommodate low-scale NP → we can (hope) to probe high scales via flavor physics

Mass scale of New Physics (new colored & flavored particle							
Simplifying a complicated multi-dim. problem		< 1 TeV	few TeV	> few TeV			
		Direct New Physics searches @ high pT:					
		NP within direct reach @ 8 TeV	NP within reach (a) 14 TeV	NP beyond direct searches @ LHC			
		NP effects in Quark Flavor Physics:					
	Anarchic $\frac{\text{huge}}{[>O(1)]}$		sizable [O(1)]	sizable/small [< O(1)]			
Flavor Structure	Small misalignment (e.g. partial compositeness)	nisalignment sizable (<i>e.g. partial</i> [O(1)]	small [O(10%)]	small/tiny [O(1-10%)]			
	Aligned to SM (<i>MFV</i>)	small [O(10%)]	tiny [O(1%)]	not visible [< 1%]			

The special role of kaons

Some of the main virtues:

- Weak decays (↔ *natural probes of the electroweak scale*) with high theoretical cleanness (*similar to B mesons in this respect*)
- Short-distance FCNCs with the strongest CKM suppression:

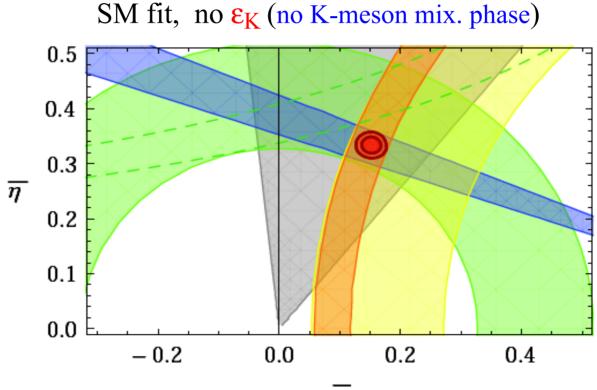
$$A = A_0 \begin{bmatrix} c_{SM} \frac{1}{M_W^2} + c_{NP} \frac{1}{\Lambda^2} \end{bmatrix}$$
$$\sim V_{ts} V_{td} \sim 10^{-4}$$
for (short-distance) s \rightarrow d transitions

• Limited number of possible final states which allow clean studies of light weakly-coupled new particles.

The special role of kaons

Short-distance FCNCs with the strongest CKM suppression:

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM+v}} + \frac{c_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)}$$
G.I.


G.I., Perez, Nir '10 (2013 update)

	Operator	Bounds on Λ in TeV ($c_{\rm NP} = 1$)		Bounds on $c_{\rm NP}$ ($\Lambda = 1$ TeV)		Observables
		Re	Im	Re	Im	I
ſ	$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
	$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
	$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^3	$5.6 imes 10^{-7}$	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
_	$(\bar{b}_L \gamma^\mu d_L)^2$	6.6×10^{2}	9.3×10^{2}	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
	$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^3	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
-	$(b_L \gamma^\mu s_L)^2$	1.4×10^{2}	2.5×10^2	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
	$(\bar{b}_R s_L) (\bar{b}_L s_R)$	4.8×10^2	8.3×10^2	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

 \rightarrow K decays are the most sensitive probes of possible non-MFV couplings

The special role of kaons

And if we want to be optimistic... at present there is even a small tension in CKM fits that could be due to NP in the (neutral) kaon system...

 $\overline{\rho}$

$$\begin{bmatrix} \mathbf{I}. & \mathbf{K}_{\mathrm{S}} \to ll \end{bmatrix}$$

Rate decomposition of neutral K decays into a lepton pair:

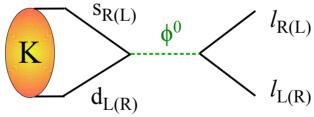
$$\begin{bmatrix} \mathbf{I}. & \mathbf{K}_{\mathrm{S}} \to ll \end{bmatrix}$$

Rate decomposition of neutral K decays into a lepton pair:

$$\begin{split} \Gamma(K_{S} & \rightarrow \ell^{+}\ell^{-}) = \frac{m_{K}\beta_{\ell}}{8\pi} \left(|A|^{2} + \beta_{\ell}^{2}|B|^{2} \right) & \beta_{\ell} = \left(1 - \frac{4m_{\ell}^{2}}{m_{K}^{2}} \right)^{1/2} \\ & & \mathsf{S-wave} & \mathsf{P-wave} \\ \hline & & \mathsf{Long-distance}\left(2\gamma \right) & \\ & + & \mathsf{Long-distance}\left(2\gamma \right) & \mathsf{dominated} \\ & \mathsf{CPV} \text{ Short-distance}\left(\leftrightarrow \mathsf{NP} \right) & \bullet & \mathsf{Calculable with good accuracy} \end{split}$$

- Sub-leading within the SM
- Not directly bounded by $K_L \rightarrow \mu \mu$

Ecker, Pich, '91 G.I, Unterdorfer, '04

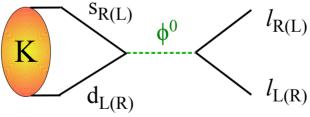

- *Not interfering with short-distance*
- Leads to tiny SM rates:

 $BR(K_{S} \rightarrow \mu\mu)_{SM} \sim 5 \times 10^{-12}$ $BR(K_{S} \rightarrow ee)_{SM} \sim 2 \times 10^{-14}$

I.
$$K_S \rightarrow ll$$

 $K_{S} \rightarrow \mu \mu$

- Clean signal of NP if $BR \ge 10^{-11}$
- BR ~ few×10⁻¹¹ possible without "tuning" the CPV phase of the amplitude (possible in "natural" NP models)
- BR >> 10⁻¹¹ not directly excluded, but require a pure CPV s.d. amplitude to evade the K_L bound ("*ad hoc NP model*"...)



I.
$$K_S \rightarrow ll$$

 $K_{S} \rightarrow \mu \mu$

 $K_s \rightarrow ee$

- Clean signal of NP if $BR \ge 10^{-11}$
- BR ~ few×10⁻¹¹ possible without "tuning" the CPV phase of the amplitude (possible in "natural" NP models)
- BR >> 10⁻¹¹ not directly excluded, but require a pure CPV s.d. amplitude to evade the K_L bound ("*ad hoc NP model*"...)

- Clean signal of NP if BR $\geq 5 \times 10^{-14}$
- "Visible" rates not impossible, but generated only in rather exotic models (e.g. new scalar coupled to sd and ee, but not $\underline{\mu}\mu$)

II. $K_S \rightarrow \mu e$

Similarly to $K_s \rightarrow \mu\mu$, here the main problem is the constraint from the corresponding K_L mode (same flavor structure, but different parity of the $s \rightarrow d$ current).

But the problem is worse given the tighter bound from K_L:

 $BR(K_{\rm L} \rightarrow \mu e) < 5 \times 10^{-12} \qquad \Longrightarrow \qquad BR(K_{\rm S} \rightarrow \mu e) \leq 10^{-14}$

with no "tuning" of the parity structure of the $s \rightarrow d$ current

III. The Charge asymmetry in $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$

$$\frac{\Delta\Gamma}{\Gamma} = \frac{\Gamma(K^+ \to \pi^+ \mu^+ \mu^-) - \Gamma(K^- \to \pi^- \mu^+ \mu^-)}{\Gamma(K^+ \to \pi^+ \mu^+ \mu^-) + \Gamma(K^- \to \pi^- \mu^+ \mu^-)}$$

Short-distance CP-violating phase calculable with good accuracy

 $Q_{7} \sim (\overline{s}_{L} \sigma_{\mu\nu} d_{L}) F^{\mu\nu}$ $Q_{9} \sim (\overline{s}_{L} \gamma^{\mu} d_{L}) (\overline{l} \gamma_{\mu} l)$

- Strong re-scattering phase determined <u>unambiguously</u> from $K \rightarrow 3\pi$ data
- → Non-vanishing (tiny) SM contribution: $(\Delta\Gamma/\Gamma)_{SM} \sim 10^{-4}$

D'Ambrosio, Ecker, G.I. & Portolés, '98

With $d \rightarrow b$ we get

the operator that

could explain the

 $B \rightarrow K^* ll$ anomaly...

Selected rare decays (in the LHCb perspective)

III. The Charge asymmetry in $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$

$$\frac{\Delta\Gamma}{\Gamma} = \frac{\Gamma(K^+ \to \pi^+ \mu^+ \mu^-) - \Gamma(K^- \to \pi^- \mu^+ \mu^-)}{\Gamma(K^+ \to \pi^+ \mu^+ \mu^-) + \Gamma(K^- \to \pi^- \mu^+ \mu^-)} \qquad \begin{array}{c} \text{Clean probe of} \\ \text{direct CPV} \end{array}$$

- → Short-distance CP-violating phase calculable with good accuracy $Q_7 \sim (\overline{s}_L \sigma_{\mu\nu} d_L) F^{\mu\nu}$ $Q_9 \sim (\overline{s}_L \gamma^{\mu} d_L) (\overline{l} \gamma_{\mu} l)$
- Strong re-scattering phase determined <u>unambiguously</u> from $K \rightarrow 3\pi$ data
- Non-vanishing (tiny) SM contribution: $(\Delta\Gamma/\Gamma)_{SM} \sim 10^{-4}$

Small rate: BR=1×10⁻⁷

Existing measurement from NA62: $(\Delta\Gamma/\Gamma)_{exp} = 0.010 \pm 0.023$

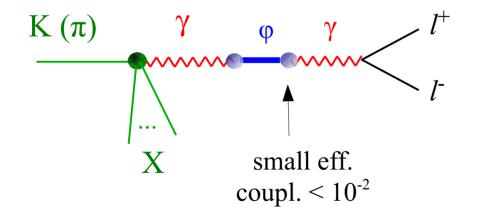
Probably difficult to do better @ LHCb, but it is worth a detailed investigation

Probing more exotic scenarios

The unique features of K decays allows a series of exotic searches (LFV, axions, heavy neutrinos...) which are absolutely worth to perform.

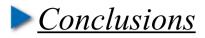
Particularly interesting are the searches for <u>new light states</u> (i.e. NP models which falls outside the general effective th. approach usually adopted). Recent revival of these models because of astrophysical puzzles

Example: new U(1) symmetry with light vector boson ($m_{\phi} < 1 \text{ GeV}$) weakly coupled to the photon [Arkani-Hamed et al. '08]


$$\overset{\varphi}{-} \overset{\gamma}{-} \overset{l^+}{-} \overset{l^+}{-} \overset{l^-}{-} \overset{l^-}{$$

Probing more exotic scenarios

The unique features of K decays allows a series of exotic searches (LFV, axions, heavy neutrinos...) which are absolutely worth to perform.


Particularly interesting are the searches for <u>new light states</u> (i.e. NP models which falls outside the general effective th. approach usually adopted). Recent revival of these models because of astrophysical puzzles

Example: new U(1) symmetry with light vector boson ($m_{\phi} < 1 \text{ GeV}$) weakly coupled to the photon [Arkani-Hamed et al. '08]

Non-trivial constraints on such particles can come from detailed analyses of K and π mesons with an ee (or $\mu\mu$) pair

Tiny peaks in the m_{ee} distributions in $\pi^0 \rightarrow \gamma ee, \ K^0 \rightarrow \gamma ee, \ K_S \rightarrow \pi^+\pi^- ee, \dots$

- Despite we have not seen any clear NP signal yet, it is still likely (and experimentally allowed) to expect some new degrees of freedom not far from the TeV scale
- On the other hand, having not seen anything so far, we can relax pessimistic assumptions about flavor mixing beyond the SM (such as MFV) → flavor physics remains an essential ingredient in the (*difficult*...) search for physics beyond the SM → worth to look in all possible channels without too strong theoretical prejudices...
- Within this context, <u>kaon physics will continue to play an important role</u>, due to the strong CKM suppression of s → d transitions
- Worth to extend the kaon physics program of LHCb, even if only focused on discovering/constraining exotic NP models