Feasibility of $K_S \rightarrow \Pi^0 \mu^+ \mu^-$

Xabier Cid Vidal (CERN)
Rare'n'Strange Workshop on rare
strange decays at LHCb

Introduction (I)

- \square $K_L \rightarrow \Pi^0 \mu^+ \mu^-$ is one of the hot channels in rare kaon decays (BF could be sensitive to new physics!)
 - K_S equivalent decay very useful to constraint the CP violating amplitude that enters in this BF
 - Current experimental measurement from NA48:

BF(
$$K_S \rightarrow \Pi^0 \mu^+ \mu^-$$
) = $[2.9^{+1.5}_{-1.2} \pm 0.2] \times 10^{-9}$

~50% error

□ Purpose of this study: can LHCb measure this BF and improve current error?

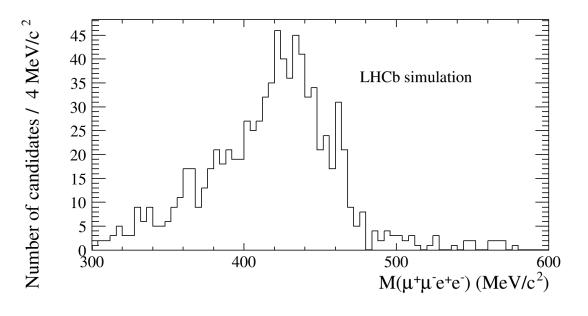
Introduction (II)

- \square The LHC provides LHCb around 10^{13} K_S in our acceptance per fb⁻¹ (we currently have 3 fb⁻¹ on tape)
 - However reconstructing and triggering K_S is difficult for us, given the low p_T of the daughters
 - Dealing with Π^0 it's even more challenging!
- □ Considered 3 options for reconstructing the signal:
 - K_S → Π^0 (e⁺e⁻) $\mu^+\mu^-$, via Π^0 → e⁺e⁻ γ (BF~1%)
 - K_S → Π^0 (γγ) $\mu^+\mu^-$, via Π^0 → γγ (BF ~ 99%)
 - $K_S \rightarrow \Pi^0 \mu^+ \mu^-$ trying to reconstruct the K_S only with the muons

Some LHCb jargon

\square $\Pi^0 \rightarrow \gamma \gamma$ at LHCb

- π^0 merged: both γ end up in the same calorimeter cluster
- π^0 resolved: each γ ends up in a different calorimeter cluster


☐ TIS/TOS?

- TIS (trigger independent of signal): events in which none of the $\mbox{\ensuremath{\mbox{K}}_S}$ daughters were responsible for the trigger
 - TIS probability is ~independent of the daughters! (e.g. same prob. for $K_S \rightarrow \Pi^0 \mu^+ \mu^-$ and $K_S \rightarrow \Pi^+ \Pi^-$)
- TOS (trigger on signal): events in which at least one of the K_{S} daughters was responsible for the trigger

$K_S \rightarrow \Pi^0(e^+e^-)\mu^+\mu^-$

- Very low reconstruction efficiency, driven by low efficiency on electrons
 - Too soft to be reconstructed!

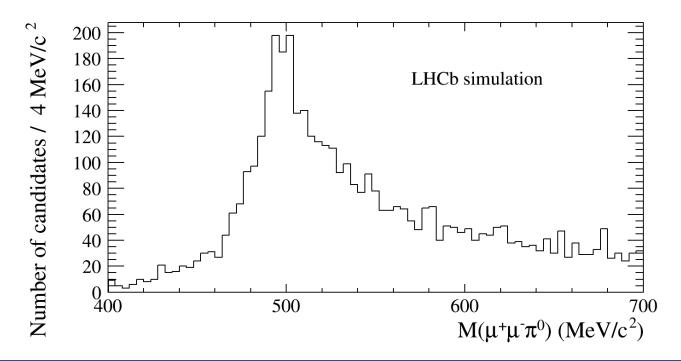
Efficiency for particles in acceptance (%)

$$\mu$$
 21.0 ± 1.5

e
$$2.5 \pm 0.5$$

Total reconstruction efficiency (%)

 0.018 ± 0.001


□ Option not feasible! (also 1% from BF[$\pi^0 \rightarrow e^+e^-\gamma$])

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$

- Also low reconstruction efficiency, driven by low efficiency on π⁰
 - Reconstructed candidates in the resolved category

	Total
	reconstruction efficiency (%)
п ⁰ resolved	0.140 ± 0.002
п ⁰ merged	0.004 ± 0.000

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$ normalisation

- □ Determining the expected yields → normalise with respect to a channel with well known BF
 - In this case, easiest normalisation to K_S → π + π -!

$$N_{K_S^0 \to \pi^0 \mu^+ \mu^-} = \frac{\epsilon^{\pi^0 \mu^+ \mu^-}}{\epsilon^{\pi^+ \pi^-}} \times \frac{BF(K_S^0 \to \pi^0 \mu^+ \mu^-)}{BF(K_S^0 \to \pi^+ \pi^-)} \times N_{K_S^0 \to \pi^+ \pi^-}$$

- The K_S →π⁺π⁻ efficiencies were obtained for the K_S →μ⁺μ⁻ analysis (efficiencies from MC, N[K_S →π⁺π⁻] from data)
- For the trigger efficiency, use TIS candidates, for which the efficiency is the same!
- Focus only in resolved Π^0

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$ yields (I)

☐ TIS yields

```
TIS yield / fb<sup>-1</sup> ~0.4
```

- ☐ TOS yields (i.e. using all triggers)
 - TOS efficiency from MC (not fully accurate, but right order of magnitude)

```
TOS yield / fb<sup>-1</sup>
```

- ☐ Yields in tape
 - For current data in tape, trigger efficiency in 2011 expected lower than in 2012
 - So probably not enough statistics for now (around ~7 events in total, with too soft cuts)

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$ yields (II)

☐ Post LS1 yields:

- Post LS1 we expect ~10 fb⁻¹ (optimistic) + higher trigger efficiency (optimistic). So some chances to observe the decay?

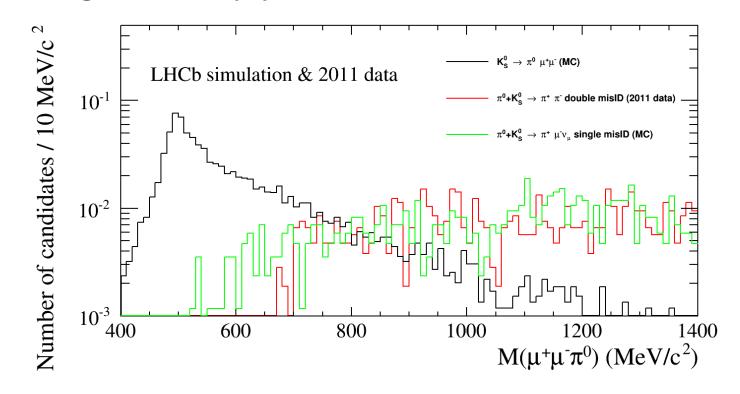
☐ Upgrade yields

- In the upgrade, ~50 fb⁻¹ and higher trigger efficiency, so fairly good chances for a competitive measurement of the BF
- □ In any case, selection should be tighten, which will have some cost in efficiency! Also consider background (next slide)

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$ background (I)

- □ Combinatorial background should be ~similar to $K_S \rightarrow \mu^+ \mu^-$, so reasonably low (requiring two very detached muons cleans a lot!)
- □ Consider also $K_S \rightarrow \Pi^+\Pi^-$ double misID (both pions misidentified as muons)+ Π^0 from underlying event

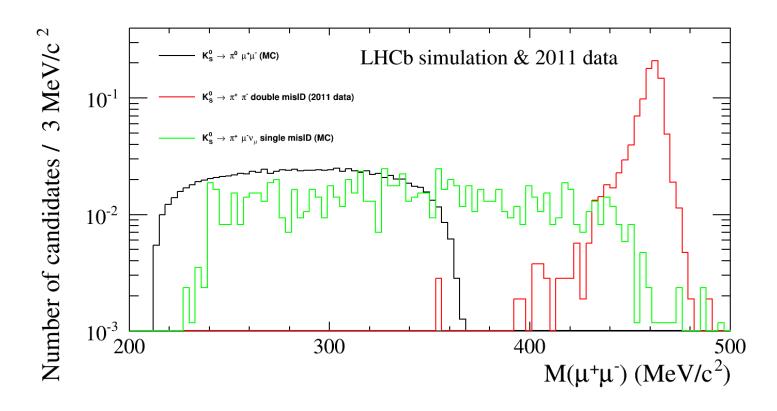
$$BF(K_S^0 \to \pi^+\pi^-) \times \epsilon(\pi \to \mu)^2 \sim 0.69 \times 0.01^2 \sim 7 \times 10^{-4}$$


- Change of mass hypothesis $(\Pi \rightarrow \mu)$ moves peak to the left. Adding Π^0 could move it back to the right!
- □ Similar situation with $K_S \rightarrow \pi^- \mu^+ \nu_\mu$ (pion misidentified as muon)

$$BF(K_S^0 \to \pi^- \mu^+ \nu_\mu) \times \epsilon(\pi \to \mu) \sim 4.7 \times 10^{-4} \times 0.01 \sim 5 \times 10^{-6}$$

$K_S \rightarrow \Pi^0(\gamma\gamma)\mu^+\mu^-$ background (II)

- □ Use $K_S \rightarrow \Pi^+\Pi^-$ (data) and $K_S \rightarrow \Pi^-\mu^+\nu_\mu$ (MC) and add Π^0 from underlying event to fake this background
- Mass spectra of signal and backgrounds:
 - Histograms simply normalised to 1


$K_S \rightarrow \pi^0 \mu^+ \mu^- (I)$

- □ Final alternative, reconstruct signal using only muons, à la $K_S \rightarrow \mu^+ \mu^-$
 - Reconstruction efficiencies much larger!
 - However mass not peaking (because of missing π^0)
- Same non-combinatorial backgrounds to be considered
 - K_S → $\pi^+\pi^-$ double misID (both pions misidentified as muons)
 - K_S → π - μ + ν_u single misID (pion misidentified as muon)

$K_S \rightarrow \pi^0 \mu^+ \mu^- (II)$

- Mass spectra of signal and backgrounds:
 - Histograms simply normalised to 1

– Signal region dominated by $K_S \rightarrow \Pi^- \mu^+ \nu_\mu$

Conclusions

- □ Have tried to see different possibilities to reconstruct $K_S \rightarrow π^0 μ^+ μ^-$ at LHCb
 - Different decay modes to reconstruct π⁰
 - Just ignoring Π^0 and focusing on the muons only
- ☐ The mode with the standard LHCb π⁰ reconstruction seems the best strategy!
- □ Analysis not feasible with our current dataset but should be in the future, particularly in the upgrade!