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Basic Performance Analysis

Four step process that iterates
1. Make sure the platform is correctly configured

○ Do not take this for granted
2. Use a really good compiler for the job

○ different compilers have different strengths
○ Use the right compiler options

3. Analyze the interaction of the SW with the HW and tune 
the code accordingly
○ Gooda...or if you must..any of a host of other tools

4. Parallelize the execution
○ Batch queue (you cannot beat trivial parallelism)
○ MPI
○ Threading

Iterate on steps 3 and 4



Platform checkout

Make sure the platform is right
1. enough memory

a. check page fault rate with vmstat, perf
i. rate > 100/sec should be investigated

2. Make sure the DIMMS are right
a. if there is a 3 channel memory controller the number of dimms/socket 

must be a multiple of 3 and in the correct slots!
b. Dimms should be matched!

3. Bios settings
a. prefetchers on
b. NUMA mode (not interleaved)
c. Disks in SATA mode (not IDE)
d. disable power management during measurements

i. at least initially



Compiler Usage and Optimization

General rule: The less you ask the compiler to do, 
                    the more likely you will find joy and fulfillment
�Complex  compilation  (inlining + loop unrolling + load hoisting +.....) 
                     may not be as effective as you think
Related  axiom: Make the compiler's  life easy
Write code that a chimpanzee  with an abacus  can code generate  and 
schedule  correctly
1. Only optimize the time consuming functions

○ speeds up build and avoid destabilizing the compiler
 



Example: The triad
Compilation can be the difference

Topologically equivalent to all programs
it has input, output and some calculations
for(i=0; i<len; i++) a[i] = b[i] + x*c[i];

BAD                           BETTER                       BEST

  28:   8b 45 fc                mov    -0x4(%rbp),%eax
  2b:   48 98                   cltq
  2d:   48 c1 e0 03             shl    $0x3,%rax
  31:   48 03 45 d8             add    -0x28(%rbp),%rax
  35:   8b 55 fc                mov    -0x4(%rbp),%edx
  38:   48 63 d2                movslq %edx,%rdx
  3b:   48 c1 e2 03             shl    $0x3,%rdx
  3f:   48 03 55 d0             add    -0x30(%rbp),%rdx
  43:   f2 0f 10 0a             movsd  (%rdx),%xmm1
  47:   8b 55 fc                mov    -0x4(%rbp),%edx
  4a:   48 63 d2                movslq %edx,%rdx
  4d:   48 c1 e2 03             shl    $0x3,%rdx
  51:   48 03 55 c8             add    -0x38(%rbp),%rdx
  55:   f2 0f 10 02             movsd  (%rdx),%xmm0
  59:   f2 0f 59 45 e0          mulsd  -0x20(%rbp),%xmm0
  5e:   f2 0f 58 c1             addsd  %xmm1,%xmm0
  62:   f2 0f 11 00             movsd  %xmm0,(%rax)
  66:   83 45 fc 01             addl   $0x1,-0x4(%rbp)
  6a:   8b 45 fc                mov    -0x4(%rbp),%eax
  6d:   3b 45 ec                cmp    -0x14(%rbp),%eax
  70:   7c b6                   jl     28 <triad+0x28>

  60:   f2 0f 10 14 02          movsd  (%rdx,%rax,1),%xmm2
  65:   41 83 c0 01             add    $0x1,%r8d
  69:   f2 0f 10 24 01          movsd  (%rcx,%rax,1),%xmm4
  6e:   66 0f 16 54 02 08       movhpd 0x8(%rdx,%rax,1),%xmm2
  74:   66 0f 16 64 01 08       movhpd 0x8(%rcx,%rax,1),%xmm4
  7a:   66 0f 28 ca             movapd %xmm2,%xmm1
  7e:   66 0f 28 d4             movapd %xmm4,%xmm2
  82:   66 0f 59 d3             mulpd  %xmm3,%xmm2
  86:   66 0f 58 ca             addpd  %xmm2,%xmm1
  8a:   66 0f 29 0c 06          movapd %xmm1,(%rsi,%rax,1)
  8f:   48 83 c0 10             add    $0x10,%rax
  93:   45 39 c8                cmp    %r9d,%r8d
  96:   72 c8                   jb     60 <triad+0x60>

  1d:   0f 28 14 c1             movaps (%rcx,%rax,8),%xmm2
  21:   66 0f 59 d1             mulpd  %xmm1,%xmm2
  25:   66 0f 58 14 c2          addpd  (%rdx,%rax,8),%xmm2
  2a:   66 0f 2b 14 c6          movntpd %xmm2,(%rsi,%rax,8)
  2f:   48 83 c0 02             add    $0x2,%rax
  33:   48 3b c7                cmp    %rdi,%rax
  36:   72 e5                   jb     1d <triad+0x1d>



Compiler Usage and Optimization

General rule: The less you ask the compiler to do, 
                    the more likely you will find joy and fulfillment
�Complex  compilation  (inlining + loop unrolling + load hoisting +.....) 
                     may not be as effective as you think
Related  axiom: Make the compiler's  life easy
Write code that a chimpanzee  with an abacus  can code generate  and schedule  correctly
1. Only optimize the time consuming functions

○ speeds up build and avoid destabilizing the compiler
2.  Check that the compiler actually generated good code

General Optimization
● Do everything possible with data while you have it
● Optimize cache line layout to use every byte while you have it
● Optimization takes advantage of the specifics

○ Avoid overhead of generalization

All this leads to "Write large hand optimized functions"



Bandwidth or Latency limited?

Triad
for(i=0; i<len; i++) a[i] = b[i] + x*c[i];
 
Linked list walk
i=0;
while(i<len){

p=*p; //  *p = &p + 64,  p[last] = &p[0]    circular buffer
i++;
}

 
Gather
for(i=0; i<len; i++) a[i] = b[address[i]];  //  address is "random"



Application classes

Server apps break down into 2 dominant groups:
�Enterprise and HPC
�Enterprise apps are characterized by branch dominated execution of small 
functions (OOP/C++)
�no dominant hotspots
HPC are dominated by loops
�5-50 hot loops will account for 95% of cycles

Client apps break down to interactive and video game
interactive apps may not have performance as a "feature"
Video games have a lot in common with HPC
Except for smaller data sets



Optimizing Loops

What is the most critical thing to know about a loop you want to 
optimize?

The trip count
The Trip count
The TRIP COUNT!
THE TRIP COUNT!
THE TRIP COUNT!
Variations in the tripcount
Some other things...

whose solutions all depend on the trip count

And getting the tripcount of a loop is not easy



Code Optimization is Minimizing Cycles

● Nothing else matters
● Decisions of what code to work on must be based on reasonably 

accurate estimates of what can be gained
○ in cycles

● Cycle accounting computation is architecture specific
○ events do not map consistently between architectures

■ even instructions_retired
● Cycles can be grouped into architecture independent groups

○ some groups will be meaningless on some architectures
○ unlikely all groups are discussed in this talk
○ forms a hierarchical tree



Hardware Event Collection
Two modes: Counting and Interrupt

● Counting mode: Workload Characterization
○ program counter to count desired event
○ initialize to zero
○ read value of counter after a fixed time
○ Good for giving feedback to processor architects
○ Most events are targeted for this

■ cache hit rates/MESI state, Intel "matrix event"
○ Can assist in optimizing machine configuration

■ Page sizes
● A spreadsheet analysis demo will be done later to illustrate usage



Hardware Event Collection
Two modes: Counting and Interrupt

● Interrupt mode: profile where events occur vs asm/source
○ enables methodical code optimization

■ program counter to count desired event
■ initialize to overflow - sampling period
■ capture IP, PID, TID, CPU and other data on interupt

○ Post Processing tool needed for generated data file
○ Main focus here

Cycle accounting methodology works for both modes
But not always at finest granularities (source/asm)
sampling IPs likely do not reproduce true IP distribution
causing differences and ratios evaluated for single instructions to be 
nonsense



Cycle Groups Form a Hierarchical Tree

● Cycles divide into halted and unhalted
● Unhalted cycles can be divided into 

              "stalled" and "unstalled"
○ exact definition can vary
○ decomposition will always lead to same components on a given architecture

● Definition of cycles must be considered
○ reference cycles != core pipeline cycles

● Most activity is defined in core pipeline cycles
○ instruction latencies, on core cache latencies are in pipeline cycles
○ usually best to stick with that

● Halted cycles are better measured in reference cycles
○ Most processors drop the core frequency when in the halted state



Artistic Out of Order Pipeline
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Cycle Accounting

Total cycles

Halted cycles

Unhalted cycles

Unstalled cycles

Stalled cycles

Port saturation
Function call overhead
Instruction serialization
exception handling

Load latency
Bandwidth saturation
Instruction starvation
Instruction latency
Store resource saturation
Multi thread collisions
Branch non/misprediction
Lock Acquisition



Cycle Accounting on Westmere

Total cycles*

Halted cycles*

Unhalted cycles*

Unstalled cycles*

Stalled cycles*

Port saturation*
Function call overhead**
Instruction serialization***

exception handling*

Load latency*
Bandwidth saturation*
Instruction starvation****
Instruction latency**
Store resource saturation*
Multi thread collisions**
Branch non/misprediction*
Lock Acquisition*** well covered on WSM

** partially covered on WSM
*** not covered on WSM

**** accurate count, inaccurate profile



Cycle Decomposition

● Stalled/unstalled cycles are decomposed as a sum of
    count(event)*cost(event)

○ this is effectively serializing execution
■ does not handle temporally overlapping stall conditions

○ requires that events have a well defined cost
● In some cases "covering" events can be used to estimate the upper limit 

of the total cost
○ Correcting for overlapping penalties
○ offcore_requests_outstanding:demand_reads:cmask=1

■ cycles with at least 1 offcore demand read (load) in flight 
■ would count total cycles attributable to offcore load latency
■ Problem: "Demand" includes L1d HW prefetch

■ offcore_requests.demand_read/SUM(mem_load_retired:"offcore") > 1
■ you can't always count what you want

○ (Uops_issued:stall_cycles - resource_stalls:any) covers instruction 
starvation
in the FE uop delivery, but differences of event counts make lousy 
profiles



Stalls

● Define stalls as "retirement stalls" = cycles with no retirement
● Stalls can be ~decomposed using other events into

○ Load latency
○ Memory bandwidth saturation
○ Instruction starvation
○ Instruction latency
○ Store resource saturation
○ Branch non/misprediction
○ Multi thread collisions (only for cores with shared pipelines)
○ Lock acquisition
○ and probably some others 

● Top 3 tend to dominate HPC and Enterprise applications



Load Latency

● Load latency will stall the pipeline
○ Store latency rarely will
○ events must ONLY count loads

■ most cache miss events count loads and stores
■ data_cache_misses:l2_cache_miss

● "Generic" events count all sorts of things
○ generic l1_miss counts l2_hw_prefetch that hit L2 on WSM

● Decomposition is easiest with exclusive "hit" events
○ load_hit_here

■ accurate penalty/event can be determined
■ a difference must be used with "miss" events to define a penalty

■ making profiling extremely inaccurate
○ SUM( Count(event)*Penalty(event)) = load_latency

● Events must be "precise" to identify asm line
○ Skid can be into another function!
○ PEBS on Intel, IBS on AMD are examples



EX: Load Latency on Westmere

● Includes load accesses to caches and memory, load DTLB costs and 
blocked store forwarding (A lot of events!)

○ For example:
■ 6*mem_load_retired:l2_hit
■ 52*mem_load_retired:l3_unshared_hit  (should be called l3_hit_no_snoop)
■ 85*(mem_load_retired:other_core_L2_hit_hitm - mem_uncore_retired:local_hitm)
■ 95*mem_uncore_retired:local_hitm
■ 250*mem_uncore_retired:local_dram_and_remote_cache_hit
■ 450*mem_uncore_retired:remote_dram
■ 450*mem_uncore_retired:remote_hitm
■ 250*mem_uncore_retired:other_llc_miss
■ 7*(dtlb_load_misses:stlb_hit + dtlb_load_misses:walk_completed) + 

dtlb_load_misses:walk_cycles
■ 8*load_block_overlap_store

○ Latency can depend on specific configuration
■ Need to measure and verify with micro benchmarks
■ small penalties (< 10 cycles) have large fractional errors

● Tool makers need to know methodology so users don't
○ The analysis methodology should be in the data presentation
○ Predefine collection scripts
○ Data viewer/analysis should absorb the calculations



Instruction Starvation

● Uops_issued:stalls - resource_stalls:any on Intel
■ Uops_issued:stalls   =  Uops_issued:any:c=1:i=1
■ covering event
■ This difference cannot be used when profiling

● Decomposed on WSM as
○ 55*l2_rqsts:ifetch_miss
○ 8*l2_rqsts:ifetch_hit
○ 7*(itlb_misses:0x10 + itlb_misses:walk_completed) + itlb_misses:

walk_cycles
○ 6*Ild_stall:lcp

● Very large skid!  (100 instructions)
● On SNB rs_events:empty_cycles counts cycles scheduler is completely 

empty
○ Dominated by ifetches from L3 and br mispredictions



Measuring Bandwidth Saturation

● Bandwidth saturation results in cacheline requests backing up in the 
queuing hardware.

● Measuring the cycles a code is BW limited involves measuring the cycles 
the queues have a "lot" of entries

● Measuring the BW itself is pretty much useless
○ the BW limits will depend on the number of threads using BW, where 

they are and where the lines are coming from
○ a multi dimensional surface
○ BW limitations occur when the thread is "close" to the appropriate 

spot on this surface
○ measuring queue occupancy is just easier

● Total queue occupancies can be measured on some processors
○ Many processors do not support this at this time



Understanding BW Measurement Data

● Counting BW limited cycles on WSM can be done with
offcore_requests_outstanding:any:c=6

○ any request in the queue, cycles with at least 6 entries
○ empirically determined to work well
○ need to count everything, loads, stores and prefetches

● Use offcore_response:data_in:local_dram & offcore_response:data_in:
remote_dram for NUMA

● Drawbacks:    Counts transfers from L3
● Complications

○ BW limited execution can fire PEBS load events
■ for(i=0;i<len;i++)a[i] = b[addr[i]];     //gather operation

■ will fire PEBS load events
■ OOO exec allows many loads to be in flight simultaneously for 

such a loop
○ Ignore load latency cycles when execution is BW limited

■ this might get into the tool in the future
■ for now understand the issue / do the correction



Branch Misprediction is Complicated

● Many execution phases in a branch misprediction
1. cycles pursuing wrong path
2. cycles flushing pipeline (not in NHM/WSM/SNB)
3. cycles fetching correct instructions (instruction starvation)
4. cycles pushing correct instructions through FE to exec

● 1 and 3 have variable duration
○ example data dependent conditional branch where data must be 

fetched
● Wrong path ~ (uops_issued - uops_retired)/uop_issue_rate
● 4 has variable duration on SNB due to DSB (trace cache)



Unstalled Cycle Accounting

● Just because cycles are not stalled, does not mean they are effective
● Some issues that can result in poor performance with no stalls are

○ Port saturation: one port (loads) dispatches on >= 75% of cycles
○ Call overhead: several cycles worth of instructions to execute call and 

return. Inlining might be called for
○ Serial execution: limiting ILP to low values
○ Exception handling: like denormals

● This list is surely incomplete



Workload Characterization

Spreadsheet: data normalized to fixed time (75 sec)
gooda running on WSM



Rule of Threes for Enterprise Applications

An enterprise application's execution can be roughly described as:
● stalled, waiting for instructions 1/3 of the time (bit less)
● stalled waiting for data 1/3 of the time  (bit more)
● executing/retiring 1/3 of the time @ 3 uops/cycle

○ IPC = 1
● Thus an in order core would increase execution time from 1 to 1 

and 2/3  (~1.7)
○ wimpy cores are a bad idea



What is Gooda

● Open sourced PMU analysis tool
● Presents PMU event profiles of executing code

○ Most critical feature of any profiler is as a CPU sensitive asm editor
● Processes perf.data file created with "perf record"
● Intrinsically incorporates hierarchical generic cycle accounting tree 

methodology
○ Architecture specific events build the generic tree from the bottom up

● Automates the analysis and optimization methodology described in:
https://openlab-mu-internal.web.cern.ch/openlab-mu-
internal/00_News/News_pages/2010/10-15_Meeting_David_Levinthal/10-
15_Meeting_David_Levinthal.htm

○ There are several presentations, and lab exercises available through 
the link

https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/00_News/News_pages/2010/10-15_Meeting_David_Levinthal/10-15_Meeting_David_Levinthal.htm
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/00_News/News_pages/2010/10-15_Meeting_David_Levinthal/10-15_Meeting_David_Levinthal.htm
https://openlab-mu-internal.web.cern.ch/openlab-mu-internal/00_News/News_pages/2010/10-15_Meeting_David_Levinthal/10-15_Meeting_David_Levinthal.htm


Gooda

● Two component analyzer
○ Analyzer and Visualizer

● Gooda-analyzer reads perf.data files and creates .
csv/JSON tables and dot/svg files for CFG
○ does cycle accounting and adds column control data to tables
○ tables stored in directory tree for portability
○ tables contain everything needed to support all display actions



Gooda Visualizer

● Gooda-visualizer
● Web based Gooda viewer reads .csv/JSON and  generates tabular 

displays in html5 compatible browsers
● Measurements are converted to cycles by default (shown in green)
● Cycle tree is expanded through column expansions
● Displays include

○ events/process, expanding to show event/module/process
○ events/function, selecting a function opens source view tab
○ source view contains coupled displays of:

■ annotated asm, organized by basic blocks
■ annotated source
■ CFG
■ Function count based call graph

● All displays can be sorted by column header
● Top row shows total for the display

    DEMO



Backup

 



Measuring Bandwidth Saturation

● Bandwidth saturation results in cacheline requests backing up in 
the queuing hardware.

● Measuring the cycles a code is BW limited involves measuring the 
cycles the queues have a "lot" of entries

● Measuring the BW itself is pretty much useless
○ the BW limits will depend on the number of threads using BW, where they are 

and where the lines are coming from
○ a multi dimensional surface
○ BW limitations occur when the thread is "close" to the appropriate spot on this 

surface
○ measuring queue occupancy is just easier

● Total queue occupancies can be measured on some processors
○ Many processors do not support this at this time



Understanding BW Measurement Data

● Counting BW limited cycles on WSM can be done with
offcore_requests_outstanding:any:c=6

○ any request in the queue, cycles with at least 6 entries
○ empirically determined to work well
○ need to count everything, loads, stores and prefetches

● Use offcore_response:data_in:local_dram & offcore_response:
data_in:remote_dram for NUMA

● Drawbacks:    Counts transfers from L3
● Complications

○ BW limited execution can fire PEBS load events
■ for(i=0;i<len;i++)a[i] = b[addr[i]];     //gather operation

■ will fire PEBS load events
■ OOO exec allows many loads to be in flight simultaneously for such a loop

○ Ignore load latency cycles when execution is BW limited
■ this might get into the tool in the future
■ for now understand the issue / do the correction



Store Resource Saturation

● Stores retire before the data is in a cacheline
○ store buffers hold the data until the line is in L1D

● Stores must commit the data to visibility by other threads in order
○ Writes to cache arrays MUST be in order
○ Can cause store buffers to all be in use
○ stalling the FE from issuing more uops

● resource_stalls:store counts this condition
● informational data can be found from RFO events

○ offcore_requests_outstanding:any_rfo:c=1
○ offcore_requests_outstanding:demand_rfo:c=1

■ includes l1d HW prefetches
○ offcore_response:demand_rfo:local_dram  etc

● DTLB_misses:walk_cycles-dtlb_load_misses:walk_cycles



Instruction Latency

● Chained instructions decrease ILP and can cause instruction 
latency to result is stalls

○ a = b + c + d + e + f + g + h + i;
■ 3 cycles of stalls/add for FP data if evaluated left to right

● This will need to be identified through asm analysis
○ LBR mini traces run through a pipeline simulator

■ assume all cache access are L1 hits
● Exception: Arith:cycles_div_busy counts cycles for non pipelined 

divide and sqrt



Branch Non/Misprediction

● Mis/non predict detection cost can be determined as
             (uops_issued:any - uops_retired:slots)/
                                       (uops_issued:any/uops_issued:any:c=1)

○ non retired uops/uop_issue rate
● L1I resident kernel measured non predicted branches and 

mispredicted branches total cost
○ baclears:clear  (6 cycle minimum penalty)
○ br_misp_retired:all_branches (6 cycle minimum penalty)
○ This is certainly dominated by pipeline reload



Multithread Collisions on WSM

● Only an issue on machines with HT enabled
●  Pipeline collisions can occur at FE, Exec and retirement
● Additional effects can occur in caches due to mutual evictions

○ not included here as I know of no way to measure this directly
■ requires difference of HT on - HT off

■ load latency
■ instruction starvation
■ BW saturation
■ store resource saturation



Multithread Collisions on WSM

● FE collisions
○ control of (in order) FE alternates between threads when both have 

instructions/uops
○  Dispatch collisions can occur when threads can dispatch

■ can be approximated as a 0.5 * product of probabilities
■ resource_stalls are likely highly correlated between threads

● Execution collisions
○ likely dominated by load port collisions

■ can be approximated as a 0.5 * product of probabilities
● Retirement collisions

○ control of (in order) retirment alternates between threads when both have 
instructions/uops

■ can be approximated as a 0.5 * product of probabilities



Multithread Collisions on WSM

● best execution: the same binary runs on both threads
● This makes it possible to evaluate both probabilities with one 

thread, as they are the same
● FE

○ FE Prob ~ uops_issued:any:c=1/(cpu_clk_unhalted - resource_stalls.any)
○ FE collision ~ (uops_issued:any:c=1/(cpu_clk_unhalted - resource_stalls.any))**2

● Exec collisions are usually largest for loads
○ collisions delay one load by 1 cycle, increasing the latency
○ difficult to estimate for ports 1,3,5 (ALU)
○ Exec load Prob ~ Uops_executed:port2_core/(2*cpu_clk_unhalted)

■ the factor of 2 is there because the event counts both threads
○ Exec collision ~ (Uops_executed:port2_core/(2*cpu_clk_unhalted))**2

● Retirement
○ collisions ~ (uops_retired:any:c=1/cpu_clk_unhalted)**2



Lock Acquisition

● this is not so great on WSM
● use the load latency event to identify very long latency loads
● these are usually highly contested locks
● this is can be checked against the disassembly



Port Saturation

● When one port is dispatching uops on almost every cycle, that will 
define a lower limit to the execution

● no optimization is possible unless the uops on the saturated port 
are reduced

● For example: A large number of distinct loops are created due 
explicit source (F90 style array notation) or by compiler loop 
distribution. This results in the same data being reloaded in every 
loop and port2 is saturated.

● Solution is to merge the loops and keep the data in a register



Port Saturation on WSM

● Memory ports count for both threads (ports 2,3,4)
● Saturation is determined by the maximum of:

○ Uops_executed:port0/cpu_clk_unhalted
○ Uops_executed:port1/cpu_clk_unhalted
○ Uops_executed:port2_core/cpu_clk_unhalted
○ Uops_executed:port3_core/cpu_clk_unhalted
○ Uops_executed:port4_core/cpu_clk_unhalted
○ Uops_executed:port5/cpu_clk_unhalted

being above ~75%
only way to get code to go faster is to reduce pressure on the port

● Port2 is usually the culprit
○ for an optimized dense matrix multiply ports 0 and 1 should be the constraint



Function Call Overhead

● Function calls can require several cycles of instructions just for 
set up (loading arguments to stacks or registers, call + 
trampolines) and tear down (restoring state, return)

○ assuming a 3 cycle penalty is probably reasonable
● There can be an additional penalty caused by missed compiler 

optimizations due to the compiler not knowing what the function 
is doing

○ loads cannot be hoisted above function calls for example
● cost ~ 3*br_inst_retired:near_call 

■ WSM, suffers from shaddowing
● Even better to use LBR's filtered on return and sampled with 

br_inst_retired:near_return
○ get source and target
○ 16 measures/ sample



Exception Handling

● Exceptions handled by the microcode sequencer result in a large 
flow of uops through the pipeline.

● You are not stalled, but you are not making progress.
● Classic example might be handling denormals
● cost ~ uops_decoded:ms_cycles_active/cpu_clk_unhalted

○ this also results in an anomolous value for 
                uops_retired:any/inst_retired:any

■ which may have less skid
○ Also counts repmov and sincos



Instruction Serialization

● Dependencies between instructions can result in low instruction 
level parallelism (ILP)

● EX:  a = b+c+d+e+f+g+h+i;
○ ANSI requires this be evaluated left to right creating dependencies
○ for FP operands this results in stalls and low ILP
○ recoding as   a = ((b+c)+(d+e))+((f+g)+(h+1));

breaks the dependency
● At this time there are no HW events to identify this
● It will require static analysis or a pipeline simulator



Greatly Simplified Gooda Analyzer 
Data Structures

Process Structure
principal_process (pointing to self, identifies principal process)

first_module (module_struc stack only if principal)
first_mmap  (per PID stack off mmap struc's)

int* sample_count

Process Structure
principal_process

first_module (module_struc stack only if 
principal)

first_mmap  (per PID stack off mmap struc's)
int* sample_count

Principal_process 
pointer connecting 

PID's

next

mmap struc
path

address
length
time

module_struc
process_struc

principal_process_struc

mmap struc
path

address
length
time

module_struc
process_struc

principal_process_struc

next

first_mmap

module Structure
rva_hash_struc this_table (hash table for RVA struc's)

rva_list (linked list of rva struc's)
first_function  (function_struc_stack)
function_list (array of function data)

first_source (linked list of source branch_struc's)
first_target (linked_list of target branch_struc's)

int* sample_count

module Structure
rva_hash_struc this_table (hash table for RVA struc's)

rva_list (linked list of rva struc's)
first_function  (function_struc_stack)
function_list (array of function data)

first_source (linked list of source branch_struc's)
first_target (linked_list of target branch_struc's)

int* sample_count

next Only process struc's whose 
principal_process pointer 
points to themselves have 
module, rva, function struc 

stacks and so on

sample Structure
rva

this_process
this_module
this_function

return_list (branch_struc's)
call_list (branch_struc's)

int* sample_count

next

Function Structure
first_rva(linked list of rva struc's)

first_asm (linked list of asm_strucs)
first_bb (linked list of bb_struc's)

file_struc (source_file)
this_module
this_process

sources (linked list of source branch_struc's)
targets (linked list of target branch_struc's)

int* sample_count

sample Structure
rva

this_process
this_module
this_function

return_list (branch_struc's)
call_list (branch_struc's)

int* sample_count

Function Structure
first_rva(linked list of rva struc's)

first_asm (linked list of asm_strucs)
first_bb (linked list of bb_struc's)

file_struc (source_file)
this_module
this_process

sources (linked list of source branch_struc's)
targets (linked list of target branch_struc's)

int* sample_count

next



Cycle Accounting on Westmere

Total cycles*

Halted cycles*

Unhalted cycles*

Unstalled cycles*

Stalled cycles*

Port saturation*
Function call overhead**
Instruction serialization***

exception handling*

Load latency*
Bandwidth saturation*
Instruction starvation****
Instruction latency**
Store resource saturation*
Multi thread collisions**
Branch non/misprediction*
Lock Acquisition*** well covered on WSM

** partially covered on WSM
*** not covered on WSM

**** accurate count, inaccurate profile


