
Google Confidential and Proprietary

Introduction to
Micro- Architecture and
Software Execution
David Levinthal
Sept 6, 2013

Google Confidential and Proprietary

Disclaimer

This presentation merely represents how
the author thinks about micro processor
execution
The model discussed is arrived at from
publicly available publications, reverse
engineering based on kernels and
performance events and Occam's razor
Any actual similarity to reality is purely
coincidental

Google Confidential and Proprietary

Micro-architecture and SW execution

● Overview: Why know this?
● Cachelines and cacheline movement
● Caches

○ Cache hierarchy/ Associativity
○ Cache coherence/line replacement

● Core Pipeline
○ Uop flow
○ Front end

■ Branch prediction
■ decoders and trace caches
■ resource allocation

○ Out of Order executions
■ Scheduling
■ Execution
■ Reorder

Google Confidential and Proprietary

Why know this?

Software optimization reduces the cost of
running programs

Computers are not free
● Successful optimization requires an understanding

of how a processor executes code
○ and what it takes to do that efficiently
○ SW execution is about HW and SW

● Execution is mostly about the movement of memory
addresses for instructions and data into and out of
the processors execution units
○ Optimization is using the processors'

"plumbing" effectively

Google Confidential and Proprietary

Why know this?

To use HW performance events one must understand
what they measure and what those measurements
imply.
An understanding of how the micro architectural
components can limit performance is critical to
achieving this.
A mental model of the execution flow and how it
manifests itself in the measurable quantities will be the
basis of any understanding of performance
bottlenecks.

Google Confidential and Proprietary

Memory addresses and cachelines

Process memory space:
Each process has its own virtual (or linear) memory
address range
Data and instructions occupy this space
Compiled code is loaded in modules by the OS
using mmap

modules can be loaded, unloaded, reloaded
Data address space is usually allocated with
malloc (new)

these in turn just invoke mmap

Google Confidential and Proprietary

Memory addresses and cachelines

HW uses physical addresses
mmap allocates virtual addresses

creating a contiguous sequential virtual address range
physical address are assigned on initialization/reloading from
swap space
physical addresses can be discontinuous
come in units of "physical pages" (4KB by default)

low order address bits within a page are identical for virtual
and physical address
12 bits for 4KB pages

DTLB translates virtual addresses to physical
HW is accessed by physical addresses

caches, dram, addressable memory on devices (video cards, etc)
L1D can cheat doing access with low order bits in parallel with
 DTLB conversion to physical address

Google Confidential and Proprietary

Memory addresses and cachelines

For HW the fundamental unit of address
space is a cacheline

64 bytes on x86 processors
lowest 6 bits of address
64 lines/4KB page

Order of bit significance can be least to most (little
endian, x86) or most to least (big endian, PPC)

Google Confidential and Proprietary

Cacheline Movement

Cacheline movement is usually dominant
performance limitation in large applications
consuming large amounts of data

during application execution induced by:
loads (demand read)
stores (read for ownership/RFO or NT store)

data in cacheline will be modified by stores
SW prefetch (movement with cache as final target)
HW prefetch (movement with cache as final target)
Instruction fetch (driven by branch prediction HW)

Google Confidential and Proprietary

Cacheline Movement

HW prefetch looks for access patterns
4 component prefetcher in Intel processors

High density of accesses with a increasing or decreasing trend
Pull 2 lines at a time
Strided access a single instruction address (L1D prefetch)
Streaming pattern detected in L1D

Branch prediction does not prefetch instruction
lines

SNB/IVB can prefetch to L3 instead of L2
freeing resources in the core
lines are pulled into core by OOO executed loads

taking advantage of larger OOO window

Google Confidential and Proprietary

Caches
Microprocessors have multi level system of
temporary storage for cachelines

access latency increases with size
Typically smallest caches are dedicated to data or
instructions: L1D and L1I
Larger caches are unified (L2 and L3)

Multi core processors typically have a
 2 level cache hierarchy/core
Large shared cache in common
 uncore/northbridge

Google Confidential and Proprietary

Caches
Caches are divided into sets based on
address aka associative sets

ex: 16KB 4 way associative cache
16KB/4 = 4KB = 1 page
all lines with the same offset to the page boundary
will try to be put in one of the 4 lines of a single
associative set

bits 11:7 are identical
address aliasing

Google Confidential and Proprietary

4 way set associative 16KB cache

 bits 5:0 define position within cacheline

bits 11:6 define the row each column is one page long

Google Confidential and Proprietary

Caches
Bad address usage can result in only a few
associative sets being actively used
"locally" (temporally)

ex: dense matrix multiply with leading dimension
that is a power of 2
This will cause access strides that are a power of 2
The stride of associative sets is also a power of 2

Causing a harmonic use of associative sets

Google Confidential and Proprietary

Shared L3 Caches

Two basic styles:
Single table vs multiple components

WSM/NHM and earlier had single table caches
SNB/IVB (NHM-EX/WSM-EX) have component
caches on a ring
Components called C-Boxes
C-Box assigned through hash encoding of address
Wider variability of L3 latency

Google Confidential and Proprietary

Cache Coherence
Only valid copies of cachelines should be
accessed: cache coherence

if parallel execution allows inconsistent copies to exist,
correct/consistent results become impossible

Cache coherence is supported by
 MESIF protocol

Lines can only be Modified if core has Exclusive access
Other copies must be Invalidated
Shared/Forward state allows multiple readers

Core must always search for current correct
copy on new read aka snoop other caches

Google Confidential and Proprietary

Cacheline replacement
Lines are replaced on the basis of "least
recently used" (LRU) algorithm

Modified lines are written back to higher cache level
aka writeback on eviction

minimizes cacheline movement

Intel populates caches inclusively on read,
mostly

all caches get a copy when the line is loaded (mostly)
L3 acts as a snoop filter: minimizing latency

AMD populates L1D/I on read
higher caches populated on eviction
minimize cacheline duplication

Google Confidential and Proprietary

Execution

● Core Pipeline
○ Uop flow
○ Front end

■ Branch prediction
■ decoders and trace caches
■ resource allocation

○ Out of Order executions
■ Scheduling
■ Execution
■ Reorder

Google Confidential and Proprietary

Artistic Out of Order Pipeline

L1 Instruction Cache

Inst Queue Branch
Prediction

Decode

Resource
Allocation

Reservation Station
AKA Scheduler

Execution Units

Reorder Buffer
(ROB)

Load/Store
Buffers

retirement

Issue

L2 Unified cache L1 Data
Cache

Resource Stalls

Google Confidential and Proprietary

Instruction/UOP flow I-Fetch

HW control flow prediction drives
instruction cacheline fetching

Branch prediction does NOT prefetch instructions
It is a fetch. Lines are pulled to Instr Decode Queue
Equivalent of a load

Analysis of cacheline movement with
performance events suggests that 2 lines
are moved/ifetch

Google Confidential and Proprietary

Instruction/UOP flow I-Fetch

Offcore instruction lines are fetched to L1I
and L2

Evicted from those caches independently
Instruction lines are not written back to L2

as they are not modified (not considering self modifying code)
L2 HW prefetcher can prefetch instructions to L2

Google Confidential and Proprietary

Instruction/UOP flow I-Fetch
Branch prediction is based on record of
historical path through executable

Branch history table
Branches can be taken or not taken
Branches may have multiple targets

indirect branch
target address in register
ex: function pointer

If history table contains no record of a
branch within the instruction stream, it is
not predicted

BACLEAR
non-prediction != misprediction

Google Confidential and Proprietary

Instruction/UOP flow: Front end
On Intel instructions are fully decoded to uops
on the fly

fetched instruction blocks are 16 bytes
front end is common between Hyperthreads
front end is in order
fe stages alternate hyperthreads if both have
instructions

On AMD some decoding is stored in the
cachelines

but only in copies in L1I and L2
fetched instruction blocks are 32 bytes
Bulldozer has some duplicated FE HW

Threading is more independent on AMD
Using more silicon & power

Google Confidential and Proprietary

Instruction/UOP flow: Front end
From here on this is just Intel
16 byte blocks must be broken into
instructions

instructions can span across 16 byte boundaries
bit strings must be checked for "length changing
prefix" (LCP)

such instructions require extra logic
and a 6 cycle FE penalty

Google Confidential and Proprietary

Instruction/UOP flow: Front end
Instructions get decoded into uops

Allowing greater flexibility in OOO execution
One decoder supports up to 4 uop instructions
Longer instructions converted to uops by ucode
sequencer (MS)

rep mov, idiv, sincos, etc
FP exceptions also handled by MS

Four uops are decoded per cycle
four decoders

three only decode instructions that produce 1 uop
4 uops produced per cycle

Google Confidential and Proprietary

Instruction/UOP flow: Front end

Decoded uops are assigned required
resources then shipped to back end for
OOO execution (Intel:Issued, AMD:
Dispatched)

registers
place in scheduler/Reservation Station (RS)
place in re-order buffer (ROB)
memory operations need load/store buffers
etc

If required resources are unavailable,
uop flow from FE must be blocked

resource stall

Google Confidential and Proprietary

Instruction/UOP flow: Front end

SNB/IVB have decoded uop trace cache (DSB)
allows FE to be run in low power if control flow points
to uop streams in DSB
Faster FE flow
Restrictions on what instruction streams can be
cached in DSB

If uop stream cannot be cached, switch to standard decode mode
6 cycle penalty in FE

FE penalties don't always slow execution
Instruction and uop queues need to drain to limit BE
execution

Google Confidential and Proprietary

Instruction/UOP flow: Front end

Loop stream detector
Long trip count loops can be detected with the
branch prediction
If they are small enough the entire loop can be held
in a HW structure called the LSD

one per hyperthread
In NHM and later the LSD can hold 28 uops

cmp and branch should be microfused to 1 uop
Allows FE to power down

Can power back up very quickly
Can improve performance for discontinuous loops

Google Confidential and Proprietary

Out of Order Execution

Once instructions have been:
delivered to the pipeline FE
decoded to uops
had resources assigned
issued to BE

They can be considered for execution
are inputs available?
are they on a known mispredicted branch path?

Google Confidential and Proprietary

Artistic Out of Order Pipeline

L1 Instruction Cache

Inst Queue Branch
Prediction

Decode

Resource
Allocation

Reservation Station
AKA Scheduler

Execution Units

Reorder Buffer
(ROB)

Load/Store
Buffers

retirement

Issue

L2 Unified cache L1 Data
Cache

Resource Stalls

Google Confidential and Proprietary

Google Confidential and Proprietary

Scheduling uops at the RS

OOO scheduling treats uops as
independent free agents to some extent

once inputs are available they can be sent to
execution units (Intel: dispatch, AMD:Issue)

Scheduler/RS is monolithic on Intel
Scheduler partitioned by function for AMD/IBM-PPC

fp/integer or fp/integer/memory
Monolithic scheduler can apply all slots for any
execution sequence

but large scheduler is difficult to make
sort of "fully associative" to be as fast as possible

Google Confidential and Proprietary

Scheduling uops at the RS

Since uops execute "independently",
execution of different hyperthreads is
straightforward
Uops can be dispatched speculatively

count uop dispatch for pointer chase as a function
of latency/buffer size

as latency of pointer chase loop increases,
we observe the uop dispatch count/iteration increases

Makes defining/observing pipeline stalls at
execution very difficult

on WSM and SNB
solved on IVB

Google Confidential and Proprietary

Uop execution
Intel processors (prior to HSW) have 6 ports
for transferring uops to the execution units

HSW will have 8 ports (see IDF presentation)
Multiple execution units per port

Loads and stores execute on ports 2,3,4
Stores decode into 2 uops

store address, store data
loads/stores need load/store buffers to execute

Dependent uops wait for loads to complete
Dependent uops can forward store data
from store buffers in many cases

Thus are not usually blocked by stores

Google Confidential and Proprietary

Cacheline movement for loads/stores
Load and stores interact with L1D using
load/store buffers
If line is not in L1d it must be retrieved

On first miss a line fill buffer is allocated to deliver
line to L1d

Subsequent "secondary misses" will "hit the line fill buffer"

If line misses L2 a request must be sent
offcore

allocate a position in "superqueue"
when line returns, it is checked into L1 and L1D

Miss in L3 will cause a request to local
integrated memory controller and remote
cache/memory controller

Google Confidential and Proprietary

Load and store buffers

The interaction with the L1D cache requires load buffers for load
operations and store buffers for store operations.
When all load or store buffers are in use, uops flow from the FE
will be blocked when a load or store uop tries to issue.
For loads:
 Execution is usually dependent on loads completing so
execution stops in the BE due to dependency
For Stores:
 Execution is not blocked, except in cases of store forward block
(ex: load larger than overlapped store). Data must appear in
caches in order. Consequently long latency RFO can result in all
store buffers being allocated, uop issue being blocked and the RS
draining to empty for the given thread.
As these resources are partitioned by the Hyperthreads, their
saturation can block uop issue for only one logical core.

Google Confidential and Proprietary

Cacheline Latency Limitation

Latency limited execution really means
forward progress is limited due to waiting
on a few (1 or 2) lines to arrive from a
distant source

ex: a linked list walk
while(count < limit){
 p = *p;
 count++;}

Google Confidential and Proprietary

Cacheline Bandwidth Limitation

Bandwidth limited execution really means
forward progress is limited due to saturating
(or at least applying heavy pressure) on at
least one resource in the cacheline delivery
“plumbing”

on core: limitation from a single thread
fill buffers, load/store buffers, offcore request
queue/superqueue
ex: triad is limited by fill buffers on many systems

uncore: limitation due to many threads
memory controller queues, QPI resources, etc

Google Confidential and Proprietary

Cacheline Bandwidth Limitation (continued)

When the bottleneck is in the uncore the cacheline
requests will “back up” and ultimately manifest
themselves in high offcore request queue occupancies.
In either case (single thread on core limit, multi thread-
uncore limit) the signature will be high offcore request
queues, meaning there are many cacheline movements
in flight simultaneously.
The OOO engine can dispatch loads as soon as their
addresses are known, resulting in temporally
overlapping load requests.

Google Confidential and Proprietary

Pop Quiz:
Bandwidth or Latency limited?
for(i=0; i<len; i++)a[i] = b[addr[i]];
 where addr[n] is a randomly ordered array

What uops occupy the RS in ~ “steady state”?
What resource limits performance?

Google Confidential and Proprietary

Uop Execution

Branch instruction mispredictions are
detected at execution

ex: conditional branch depending on value that
must be retrieved from dram

Branch is blocked by load

Uops on mispredicted path must be flushed
Correct instruction lines retrieved and
pushed through pipeline

Google Confidential and Proprietary

Uop Retirement

A uop can be "retired" when all older uops
on the same correct execution path have
finished

no mispredicted branches on path to uop
retired means modifications to register values are
 committed (aka can be seen in a debugger)
Multiple uops can retire/cycle

Google Confidential and Proprietary

Uop Retirement

Stores can retire prior to data having been
written to L1D

data resides in store buffer until written to L1D or
write combine buffer and shipped to dram

NT stores write directly to dram
only 1 line movement (no rfo)

Data must appear in L1D in order
write to L1D that is blocked by L1D miss blocks
other stores from writing
Causing store buffers to stay allocated
when all store buffers are in use, pipeline stalls:

resource stall due to lack of free store buffers

Google Confidential and Proprietary

Google Confidential and Proprietary

References

Intel Software development manual and software
optimization guide
http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html
Agner Fog's work:
www.agner.org

https://code.google.com/p/gooda
 gooda-analyzer/docs
 gooda-analyzer/kernels
and
anything you can find on the web by some guy named
David Levinthal

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

