
1

ARM Streamline
and CoreSight trace

CERN Performance Tuning Workshop
22nd November 2013

2

Streamline basics
 Software based solution

 ICE/trace units not required
 Support for Linux kernel 2.6.32+ on target
 Eclipse plug-in or command line

 Lightweight sample profiling
 Time- or event*-based sampling
 Process to C/C++ source code profiler
 Low probe effect; <5% typically

 Multiple data sources
 CPU, GPU and Interconnect hardware counters
 Software counters and kernel tracepoints
 User defined counters and instrumented code
 Power/energy measurements

User Space

ARM Processor

OpenGL® ES

Applications & Middleware

Linux Kernel

Mali Drivers

gator Daemon

gator Driver

TCP/IP

Target D
evice

* Event-based sampling is available on kernels 3.0 or later

3

Live capture
 Charts are visible during capture
 Great for trying to provoke an issue...
or general system monitoring
 Think oscilloscope

 Watch key system metrics e.g.
 Activity per CPU
 Interconnect performance
 External energy measurements

 Keep only relevant part of capture
 Discard majority of captured data
 Smaller files, better focus

4

Visualization of system performance, software profile and thread switching over time

Hierarchical profile table, aggregating samples per process, thread, and function call chain

Flat software profile table, listing shared libraries and function hotspots

Source and instruction level profile. Colour coded source code lines matching samples.

Dynamically created map of the functions in your application and their relationship

Dynamic analysis of the stack usage by your application

Analysis Overview

Chronological list of text and graphic annotations sent to target agent

5

Timeline: The Big Picture
 Find hotspots, system glitches, critical conditions at a glance

 Select from 40+ CPU counters,
OS level and custom metrics

Accumulate counters, measure time
 and find instant hotspots

Select one or more processes to
visualize their instant load on CPU

Combined task switch trace and
 sampled profile for all threads

6

 Take advantage of multicore SMP platforms
 Visually trace core migration and per-core statistics
 Spot non-optimal thread synchronization and improve parallelism

SMP Analysis

Per core, per process activity

7

Selecting Performance Charts
 CPU aware PMU registers
 40+ core-level metrics to choose from

 Mali graphics
 300+ hardware and software counters

 OS level statistics
 i.e. CPU load, interrupts, networking

 Custom counters
 Easily add custom system counters

 Event-based sampling
 Match PMU events to threads/source

code

8

big.LITTLE Analysis
 Inspect tasks moving between clusters
 Cycle between aggregate, per cluster and per core
 Consistent colouring between threads and counter charts

 X-ray view

 Counters

Disclosure control

Cycle between combined values (right arrow),
cluster values (as shown), per core (down arrow)

Core / cluster colour key

X-ray mode augmented with intermediate cluster mode

9

 Output text, graphics, or markers from user or kernel space
 Write into gator driver to get your annotations synchronized on the timeline

Code Instrumentation

Use frame buffer snapshots to
optimize graphics performance

Text annotations can be used
to define job latency

10

 Output text, graphics, or markers from user or kernel space
 Write into gator driver to get your annotations synchronized on the timeline

Code Instrumentation

The Log view lists all annotations,
offering flexible filtering

11

Code Instrumentation
 Multiple channels and groups per thread
 Freedom to have overlapping annotations
 Multiple independent annotation sources (app., middleware, drivers)
 Software suppliers can add annotations for you

Multiple channels

Different sources or
types of annotations
on different channels

Groups of channels

Assign groups per
system component
or other hierarchy

Collapsed channels

Grey to indicate
annotations present

12

Timeline Chart Configuration

 Use expressions to create custom
timeline charts
 Save, categorise and share standard

expressions as ‘Snippets’

Connection
setup

Counter
selection

Data
collection

Visualization
& Analysis

Add/remove
program images

Chart customization

13

Drilldown Software Profiling

Quickly identify instant hotspots

Filter timeline data to generate
focused software profile reports

Click on the function name
to go to source code level profile

14

Bottom-Up Shared Library Analysis
Select the library or function to look

into, then navigate to Call Paths
 or Timeline

Processes or call paths using it
will be automatically highlighted

15

 Call Graph view maps relationships between functions
 Easy to navigate dynamic function-level map

Dynamic Call Graph Analysis

Functions are colour coded
according to CPU time or events

Easily navigate along call paths and
identify caller/callee relationships

Function mapping can include
system and uncalled functions

16

 Information on stack usage
 Check dynamic memory usage per function

Stack Analysis

17

Beyond average...
1. Average looks okay but we
know we have glitches

2. Zooming in we can quickly
identify something different...

3. ...or we can write out an
annotation to mark a problem

4. Then isolate region of interest with
callipers and re-compute statistics

18

Power Measurement Interfaces

V

Visual Analysis

Automated Tests

Streamline

ARM Energy Probe

NI DAQ USB-62xx

• 3-channel
• System-level analysis
• Easy to deploy
• Affordable

Good for trend spotting and
application optimization

• 40+ analog inputs
• Subcomponent sensitivity
• High fidelity
• Higher cost

Good for OS power management
tuning and benchmarking

Data Acquisition

also: on-chip sensors (via hwmon)

19

CoreSight trace

Cortex-
A7

Cortex-
A15

ETM PTM

Embedded
Trace
Buffer

Trace
Port
Interface
Unit

Software
Trace
Macrocell

AMBA Trace Bus

AXI (and RAM)

DAP 8K-
32K

Debug APB

Embedded
Trace
Router

~8Gbit/s

~100Mbyte/s

Embedded
Trace
Buffer

8K-
32K

1. Maybe no trace port

3. ETB readout can’t keep
up with program trace
(~10% trace captured)

4. Software trace will be
swamped by program trace

 add an ETR

 add a separate ETB
for STM

2. ETB fills up quickly
(a few µs for unfiltered trace)

20

Profiling with CoreSight Trace

Trace view in DS-5 Debugger

 ITM/STM Event Viewer to
track software execution

 ETM/PTM instruction and
data trace to pin-point
software bugs

 Tracepoints and filters to
optimize the usage of on-
chip trace buffers

 Instruction trace based
profiling reports

21

Cycle-based tracing
 31] (cpu2) --> vector_swi

 86] (cpu2) --> trace_hardirqs_on

 163] (cpu2) --> mark_held_locks

 199] (cpu2) --> mark_held_locks

 261] (cpu2) --> sys_getppid

 274] (cpu2) --> lock_acquire

 318] (cpu2) --> __lock_acquire

 451] (cpu2) --> mark_lock

 605] (cpu2) --> pid_vnr

 638] (cpu2) --> lock_release

 765] (cpu2) --> ret_fast_syscall

 770] (cpu2) --> trace_hardirqs_off

core #1: 739 cycles

 96] (cpu1) --> vector_swi

 299] (cpu1) --> trace_hardirqs_on

 350] (cpu1) --> mark_held_locks

 356] (cpu1) --> mark_held_locks

 433] (cpu1) --> sys_getppid

 438] (cpu1) --> lock_acquire

 529] (cpu1) --> __lock_acquire

 638] (cpu1) --> mark_lock

 760] (cpu1) --> pid_vnr

 773] (cpu1) --> lock_release

 948] (cpu1) --> ret_fast_syscall

 1004] (cpu1) --> trace_hardirqs_off

core #2: 908 cycles

Non-invasive and works with IRQs disabled

22

Self-hosted debug/trace
 Self-hosted trace control library releasing end 2013
 Targeted tracing for performance investigations
 enable/disable trace round region of interest

 Sampling profiler/coverage tool
 repeatedly capture trace fragments (cycle-accurate)
 allow accurate measurement of basic block execution times
 can use “shotgun sequencing” to construct a global profile

 Target-resident self-test
 quickly and systematically/randomly iterate through multiple configs

 System “flight recorder”
 capture rolling trace into ETB from boot time onwards
 stop capture when fault detected
 can use cross-triggers from CPU, system etc. to stop trace

 create crash dump including ETB contents
 SiP/OEM want this for base stations, network processors etc.

23

Performance analysis - where next?
 More structure to annotations
 define start and end of interval
 associate resource usage with intervals

 Scale to multiple devices and clusters
 Improved support for GPGPU (OpenCL)
 Closer integration of processor trace and sample-based

profiling
 Use CoreSight STM for trace/profile transport
 Standardize Linux interfaces to on-target trace
 enable/disable trace on perf events
 sideband data for trace decompression

24

END

www.arm.com/streamline

http://www.arm.com/streamline

25

BACKUP

26

Streamline Community vs. Basic/Pro
 Which is the right

Streamline for you?

BSP /
Distribution

Makers

OEMs /
ODMs

Application
developers

Ba
si

c/
Pr

o
Ed

iti
on

s
C

E
Community Basic/Pro

Typical Use Case Simple application
profiling

System-wide, SMP
analysis

Program Images 1 Limited to host
memory

Timeline View

* Performance Charts

* Process Bars

* Mali GPU Analysis

* Quick Profile Summary

* Core Affinity Mode

* Energy Probe data capture

* Time Filtering

* Annotation

Call Paths View

Functions View

Code View

Call Graph

Stack View

Log View

Command Line

Event Based Sampling

27

Instruction Trace or Sampling?
 Choosing the right tool for the job
 Instruction trace-based analysis doesn’t scale to high-end Cortex-A

Instruction trace-based Streamline Sample-based

Pros Pros
High granularity Integrates system events and PMU counters

Non-intrusive Hours+ capture time

Can be run remotely and in production units

Cons Cons
Cost and scalability - Requires trace unit and
off-chip trace ports

Cannot be used to observe short instruction
sequences

Sub-second capture time Adds single digit overhead

Complex to set up

No standard solution for dynamically loaded
code

28

GPU Graphics Analysis
User defined events e.g.

OpenGL® API events
CPU, and GPU fragment and

vertex processing activity

Frame buffer filmstrip
Hardware and Software counters

Visualize
application activity per processor

or processor activity per application

29

Command Line Interface
 Enables automated scripted workflows
 Manual or timed data capture
 Filter by runtime defined start and stop bookmarks – great for benchmarks
 Generates text-based reports: function, call path, stack, and log views

 Parse and compare reports for testing or benchmarking

30

DVFS in Practice

Track DVFS frequency scaling and
its impact in power consumption

31

The Power of Having It All in One Place
 How effective are you managing your energy budget?

V

Monitor instant voltage, current and
power per channel

How long it takes the power
manager to respond to
changes in CPU load?

	ARM Streamline�and CoreSight trace
	Slide Number 2
	Live capture
	Analysis Overview
	Timeline: The Big Picture
	Slide Number 6
	Selecting Performance Charts
	big.LITTLE Analysis
	Slide Number 9
	Slide Number 10
	Code Instrumentation
	Timeline Chart Configuration
	Drilldown Software Profiling
	Bottom-Up Shared Library Analysis
	Slide Number 15
	Slide Number 16
	Beyond average...
	Power Measurement Interfaces
	CoreSight trace
	Profiling with CoreSight Trace
	Cycle-based tracing
	Self-hosted debug/trace
	Performance analysis - where next?
	END
	Backup
	Streamline Community vs. Basic/Pro
	Instruction Trace or Sampling?
	GPU Graphics Analysis
	Command Line Interface
	DVFS in Practice
	The Power of Having It All in One Place

