
Group photograph at Linaro Connect in Copenhagen
Monday 29 Oct 2012

Robert Richter <robert.richter@linaro.org>

2nd CERN Advanced Performance Tuning workshop

November 21, 2013

RAS and Memory Error Reporting
with perf

mailto:robert.richter@linaro.org

www.linaro.org

Content

• RAS
• Hardware Error Handling
• RAS for Linux
• Perf Persistent Events
• New perf ioctls
• Perf based RAS daemon prototype

http://www.linaro.org/

www.linaro.org

RAS - Reliability, Availability and Serviceability

• Reliability: ensure correctness of data; detect, correct (if
possible) and isolate errors

• Availability: disable the malfunctioning component and
continue to operate with reduced resources

• Serviceability: early detect faulty hardware and reduce
time to replace it

http://www.linaro.org/

www.linaro.org

Hardware Error Handling

Hardware error handling is important for higher levels of RAS:

• Error logging

• Error prediction

• Error recovery

We focus on hardware error logging and reporting:

Give data center operators a tool to examine hw errors in the
system for further analysis and actions (identify, disable and
replace hardware components)

http://www.linaro.org/

www.linaro.org

RAS implementation - goals

• Provide a RAS framework in the kernel to collect hardware
errors from various sources and report them to userland for
further processing.

• Reference implementation of a RAS daemon to enable data
center operators to integrate it into their tools

• Use of perf_event_open syscall to access kernel event buffers

• Architecture independent, works on ARM and x86
(Collaborative work with Borislav Petkov from Suse)

• Upstream acceptance

http://www.linaro.org/

www.linaro.org

RAS Framework - Technical Overview

Thanks Al, see https://wiki.linaro.org/LEG/Engineering/Kernel/ACPI/RASandACPI

http://www.linaro.org/

www.linaro.org

RAS Components - Kernel

• Persistent perf events
o Allows running events in the system background

• Tracepoints
o Raw data sample, allows to transfer data structures from kernel to

userland

• Hardware drivers for error detection
o Vendor specific
o ACPI/APEI

http://www.linaro.org/

www.linaro.org

RAS Components - Userland

• perf tools and libraries
o perf syscall to access event buffers
o Extend event parser for sysfs support of persistent events
o Move necessary perf functions into liblk

• RAS daemon
o Reading event buffers for reporting, analysis and actions
o Report to syslogd

http://www.linaro.org/

www.linaro.org

Persistent events

• run standalone in the system's background

• no controlling process that holds an event's file descriptor

• always enabled

• data samples are collected in a ring buffer

• buffers are read only, sharable by multiple user for one event

• standard perf_event_open syscall to access buffers

• can be enabled by the kernel during early boot, no userland
necessary to setup events

• events dynamically listed in sysfs, allows out-of-the-box event
setup with perf tools

http://www.linaro.org/

www.linaro.org

perf_event ioctls - PERF_EVENT_IOC_UNCLAIM

Create a persistent event:

● Use ioctl, event is not released when closing:
 id = ioctl(fd, PERF_EVENT_IOC_UNCLAIM, 0);
 close(fd);

● Event still enabled, no controlling process

● To connect to a persistent event:
 pe.type = PERF_TYPE_PERSISTENT;
 pe.config = id;
 …
 fd = perf_event_open(...);

● id known from ioctl or gathered from sysfs

http://www.linaro.org/

www.linaro.org

perf_event ioctls - PERF_EVENT_IOC_CLAIM

Delete a persistent event:

● Re-connect to a persistent event

● “Claim” the event:
 id = ioctl(fd, PERF_EVENT_IOC_CLAIM, 0);

/* The event is no longer persistent now */
...
close(fd);

● Event is released after all file descriptors to the
event were closed and no process is using it
anymore.

http://www.linaro.org/

www.linaro.org

Perf tools patches

• Patch set sent that modifies perf tools to use persistent
events (not yet upstream)

• Most important part: update event parser to be able to
describe every event in sysfs, esp. flags (currently limited
to config values of the event):

/sys/bus/event_source/devices/persistent/events/mce_record:persistent,config=106

/sys/bus/event_source/devices/persistent/format/persistent:attr5:23

• Persistent events run then out-of-the-box:

perf top -e persistent/mce_record/

perf record -e perstent/mce_record/ ...

http://www.linaro.org/

www.linaro.org

Raw data defined as tracepoint

TRACE_EVENT(mce_record,
 TP_PROTO(struct mce *m),
 TP_ARGS(m),
 TP_STRUCT__entry(
 __field(u64, mcgcap)
 __field(u64, mcgstatus)
 __field(u64, status)
 __field(u64, addr)
 __field(u64, misc)
 __field(u64, ip)
 __field(u64, tsc)
 __field(u64, walltime)
 __field(u32, cpu)
 __field(u32, cpuid)
 __field(u32, apicid)
 __field(u32, socketid)
 __field(u8, cs)
 __field(u8, bank)
 __field(u8, cpuvendor)
),
 ...

http://www.linaro.org/

www.linaro.org

Persistent event patch set V3

• Posted in August, https://lkml.org/lkml/2013/8/22/306

• A couple of items has been addressed, esp. to create persistent
events on-the-fly:

● new event type PERF_TYPE_PERSISTENT introduced,
● support for all type of events, unique event ids,
● improvements in reference counting and locking,
● ioctl functions are added to control persistency,
● the sysfs implementation now uses variable list size.
● Limitations: only system-wide events

• Reviewed by perf maintainers Ingo and PeterZ

• No further objections on the kernel part, but need support of
persistent events in perf tools

http://www.linaro.org/

www.linaro.org

RAS Prototype - Implementation

• Tracepoints collected with persistent events, recorded with
perf-record and processed with perf-script

• Daemon basically doing:

perf record -e persistent/mce_record/ cat /dev/null | perf script -s rasd.pl

• Perl script for event processing:
cat rasd.pl

sub process_event

{

 my ($event, $attr, $sample, $raw_data) = @_;

 pintf("--- mce_record: ----------------\n");

 print("raw_data: ",

 (join '',

 map { sprintf("%02x ", $_); } unpack("C*", $event)), "\n");

 # more decoding:

 ...

}

http://www.linaro.org/

www.linaro.org

RAS Prototype - Running

root@piledriver:~# unbuffer rasd/rasd.sh &

[1] 2553

root@piledriver:~# echo 1 > /sys/kernel/debug/tracing/events/mce/mce_record/enable

root@piledriver:~# ./rasd/inject.sh

Message from syslogd@piledriver at Jul 5 18:38:37 ...

 kernel:[81.182322] [Hardware Error]: MC4 Error (node 0): DRAM ECC error detected on the NB.

Message from syslogd@piledriver at Jul 5 18:38:37 ...

 kernel:[81.201063] [Hardware Error]: Error Status: Corrected error, no action required.

Message from syslogd@piledriver at Jul 5 18:38:37 ...

 kernel:[81.209844] [Hardware Error]: CPU:0 (15:2:0) MC4_STATUS[Over|CE|MiscV|-|AddrV|-|-|CECC]:
0xdc68c0002b080813

Message from syslogd@piledriver at Jul 5 18:38:37 ...

 kernel:[81.223874] [Hardware Error]: MC4_ADDR: 0x000000042cd330a0

Message from syslogd@piledriver at Jul 5 18:38:37 ...

 kernel:[81.229363] [Hardware Error]: cache level: L3/GEN, mem/io: MEM, mem-tx: RD, part-proc:
SRC (no timeout)

--- mce_record: ----------------

raw_data: 09 00 00 00 01 00 70 00 64 00 00 00 49 00 14 00 00 00 00 00 07 01 00 00 00 00 00 00 00 00
00 00 00 00 00 00 13 08 08 2b 00 c0 68 dc a0 30 d3 2c 04 00 00 00 00 00 00 01 58 02 18 c0 00 00

...

http://www.linaro.org/

www.linaro.org

RAS Prototype - Running (2)

...

--- mce_record: ----------------

raw_data: 09 00 00 00 01 00 70 00 64 00 00 00 49 00 14 00 00 00 00 00 07 01 00 00 00 00 00 00 00 00
00 00 00 00 00 00 13 08 08 2b 00 c0 68 dc a0 30 d3 2c 04 00 00 00 00 00 00 01 58 02 18 c0 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 8d f6 d6 51 00 00 00 00 00 00 00 00 20 0f 60 00 00 00 00 00
00 00 00 00 00 04 02 00 00 00 00 00 00 00 00 00

 perf_event_type = 0x00000009

 header_misc = 0x0001

 size = 0x0070

 raw_size = 0x00000064

trace_entry_type = 0x0049

 flags = 0x14

 preempt_count = 0x00

 pid = 0x00000000

 mcgcap = 0x0000000000000107

 mcgstatus = 0x0000000000000000

 status = 0xdc68c0002b080813

 addr = 0x000000042cd330a0

 misc = 0xc018025801000000

 ip = 0x0000000000000000

 tsc = 0x0000000000000000

 walltime = 0x0000000051d6f68d

 cpu = 0x00000000

 cpuid = 0x00600f20

...

http://www.linaro.org/

www.linaro.org

RAS Prototype - Running (3)

…
 walltime = 0x0000000051d6f68d
 cpu = 0x00000000
 cpuid = 0x00600f20
 apicid = 0x00000000
 socketid = 0x00000000
 cs = 0x00
 bank = 0x04
 cpuvendor = 0x02
^C
root@piledriver:~# cat /sys/kernel/debug/tracing/trace
tracer: nop
#
entries-in-buffer/entries-written: 1/1 #P:8
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
 <idle>-0 [000] .Ns. 81.182316: mce_record: CPU: 0, MCGc/s: 107/0, MC4:
dc68c0002b080813, ADDR/MISC: 000000042cd330a0/c018025801000000, RIP: 00:<0000000000000000>, TSC: 0,
PROCESSOR: 2:600f20, TIME: 1373042317, SOCKET: 0, APIC: 0

http://www.linaro.org/

www.linaro.org

RAS - Next Steps

• Enable RAS framework on ARM

• Integrate ACPI/APEI

• Split perf tool code into liblk

• Implement RAS daemon

http://www.linaro.org/

www.linaro.org

RAS and Memory Error Reporting with perf

Questions?

http://www.linaro.org/

	RAS Daemon and ACPI
	Slide 2
	RAS - Reliability, Availability and Serviceability
	Hardware Error Handling
	RAS implementation - goals
	RAS Framework - Technical Overview
	RAS Components - Kernel
	RAS Components - Userland
	Persistent event patch set V2
	Slide 10
	Slide 11
	Raw data defined as tracepoint
	RAS Prototype - Implementation
	Perf tools patches
	RAS Prototype - Running
	RAS Prototype - Running (2)
	RAS Prototype - Running (3)
	RAS - Next Steps
	Slide 19
	Slide 20

