
Improving perf_events
measurement correctness

Maria Dimakopoulou
Optimization Team

CERN PMU Workshop 2013

Google Confidential and Proprietary

● at-retirement memory events may corrupt events on the sibling counter with
HyperThreading enabled on Intel processors
0xd0 : MEM_UOPS_RETIRED.*
0xd1 : MEM_LOAD_UOPS_RETIRED.*
0xd2 : MEM_LOAD_UOPS_LLC_HIT_RETIRED.*
0xd3 : MEM_LOAD_UOPS_LLC_MISS_RETIRED.*

● Example: SNB, CPU0,1 siblings
perf stat -a -C0 -e r81d0 sleep 10 (r81d0: MEM_UOPS_RETIRED:ALL_LOADS)
perf stat -a -C1 -e r20cc sleep 1 (r20cc: ROB_MISC:LBR_INSERTS)
 10,022,279 r20cc (LBR unused: should be zero)

● Silent & random measurement corruption

● Errata: SandyBridge (BJ122), IvyBridge (BV98), Haswell (HSD29)

What Is It About?

Google Confidential and Proprietary

Severity

● Corrupting events are commonly used
○ to study cache behavior

● Multiplexing increases risk
○ occurs asynchronously on each CPU

● Error maximized with high frequency vs. low frequency events
○ mem_load_uops_retired vs. mem_load_uops_llc_miss_retired:remote_dram
○ mem_load_uops_retired vs. mispredicted_branch_retired
○ ...

Google Confidential and Proprietary

● No Intel firmware fix available

● Only measure one logical CPU per physical core
○ coarse-grained exclusion

● Current Kernel Fix: black-list corrupting events (IvyBridge for now)
○ at-retirement memory events can never be measured

● Our approach: USX Protocol (Cache Coherence Style Protocol)
○ fine-grained exclusion based on the sibling thread’s state
○ force mutual exclusion for counters with corrupting events
○ allow sharing for counters with non-corrupting events

Solutions

Google Confidential and Proprietary

● Kernel-level scheduling of event groups
○ greedy 1st match algorithm, stops at first error

● Static constraints on events are hardcoded in kernel

● Multiplexing if necessary
○ Round-Robin of event group list for fairness
○ default rate is each timer tick

perf_events Scheduler Overview

E1 E2 E3 E4 E5 E6 E1 E7

C0 C1 C2 C3

tick 0

E1 E2 E3E4 E5 E6 E1 E7tick 1

E8

E8

any any C3 any any any any any any

Google Confidential and Proprietary

● Counter Events
○ Cycles = Non-Corrupting
○ Memory = Corrupting

USX Protocol

● Counter States
○ Unused
○ Shared
○ Xclusive

--
--
--

--
C
M

C
C
C

--
C
M

M
M
M

--
C
M

U
S
X

U
U
U

U
S

S
S

U X

✓
✗

✓

✓

✓

✓

✓

✗
✗

CPU0 CPU1 CPU0 CPU1 CPU0 CPU1

State0 State1 State0 State1 State0 State1

● Principles
○ event scheduling on one HT’s counters affects the other’s HT’s state
○ M events → allowed on counters only with U state
○ C events → allowed on counters only with U or S state

Google Confidential and Proprietary

CPU0

U
U
U
U

CPU0 State

U
U
U
U

CPU1 State

C0

C0

C1

C2

C3

CPU1

C1

C2

C3

● CPU0, CPU1 hyperthreads

● Event Lists
○ CPU0: M, C, C
○ CPU1: C, M, M

● Initial State

USX Protocol: Example

Google Confidential and Proprietary

M

CPU0

U
U
U
U

CPU0 State

X
U
U
U

CPU1 State

C0

C0

C1

C2

C3

CPU1

C1

C2

C3

1. Add M event on CPU0

2. M static constraint: 1111 (run on any counter)

3. CPU0 state constraint: 1111
○ all counters unused

4. M dynamic constraint: 1111 & 1111 = 1111

5. Scheduler picks counter0

6. Mark counter0 in CPU1 as Xclusive
○ No events can be scheduled on it

USX Protocol: Example

Google Confidential and Proprietary

M

CPU0

U
S
U
U

CPU0 State

X
U
U
U

CPU1 State

C0

C0

C1

C2

C3

C

CPU1

C1

C2

C3

1. Add C event on CPU1

2. C static constraint: 1111 (on any counter)

3. CPU1 state constraint: 1110
○ counter0 marked as X

4. C dynamic constraint: 1111 & 1110 = 1110

5. Scheduler picks counter1

6. Mark counter1 in CPU0 as Shared
○ Only C events can be scheduled on it

USX Protocol: Example

Google Confidential and Proprietary

M
C

CPU0

U
S
U
U

CPU0 State

X
S
U
U

CPU1 State

C0

C0

C1

C2

C3

C

CPU1

C1

C2

C3

1. Add C event on CPU0

2. C static constraint: 1111 (on any counter)

3. CPU1 state constraint: 1111
○ C events allowed on S counters

4. C dynamic constraint: 1111 & 1111 = 1111

5. Scheduler picks counter1

6. Mark counter1 in CPU1 as Shared
○ Only C events can be scheduled on it

USX Protocol: Example

Google Confidential and Proprietary

M
C

CPU0

U
S
X
U

CPU0 State

X
S
U
U

CPU1 State

C0

C0

C1

C2

C3

C
M

CPU1

C1

C2

C3

1. Add M event on CPU1

2. M static constraint: 1111 (on any counter)

3. CPU1 state constraint: 1100

4. C dynamic constraint: 1111 & 1100 = 1100

5. Scheduler picks counter2

6. Mark counter2 in CPU0 as Xclusive
○ no events can be scheduled on it

USX Protocol: Example

Google Confidential and Proprietary

M
C

C

CPU0

U
S
X
U

CPU0 State

X
S
U
S

CPU1 State

C0

C0

C1

C2

C3

C
M

CPU1

C1

C2

C3

1. Add C event on CPU0

2. M static constraint: 1111 (on any counter)

3. CPU0 state constraint: 1011

4. C dynamic constraint: 1111 & 1011 = 1011

5. Scheduler picks counter3

6. Mark counter3 in CPU1 as Shared
○ only C events can be scheduled on it

USX Protocol: Example

Google Confidential and Proprietary

M
C

C

CPU0

U
S
X
U

CPU0 State

X
S
U
S

CPU1 State

C0

C0

C1

C2

C3

C
M

CPU1

C1

C2

C3

1. Add M event on CPU1

2. M static constraint: 1111 (on any counter)

3. CPU1 state constraint: 0100

4. M dynamic constraint: 1111 & 0100 = 0100

5. Scheduler cannot pick counter2: occupied
○ Multiplexing!

USX Protocol: Example

M

Google Confidential and Proprietary

CPU0

C0 C
M
M

CPU1

C1

C2

C3

C
C

M

Broken Results
Multiplexing

Correct Results

USX Protocol: Example

M
C

C

CPU0

U
S
X
U

CPU0 State

X
S
U
S

CPU1 State

C0

C0

C1

C2

C3

C
M

CPU1

C1

C2

C3

M

Google Confidential and Proprietary

USX Protocol: Example Results
perf stat -a -C0 --pfm-events mem_uops_retired:all_loads,
 rob_misc_events:lbr_inserts, rob_misc_events:lbr_inserts triad
perf stat -a -C1 --pfm-events rob_misc_events:lbr_inserts,

 mem_uops_retired:all_loads,mem_uops_retired:all_loads triad

 6 723 587 814 mem_uops_retired:all_loads [100,00%]
 30 095 207 rob_misc_events:lbr_inserts [100,00%] CPU0
 30 095 207 rob_misc_events:lbr_inserts [100.00%]

 29 874 562 rob_misc_events:lbr_inserts [100,00%]
 1 684 288 987 mem_uops_retired:all_loads [100,00%] CPU1
 1 684 289 648 mem_uops_retired:all_loads [100.00%]

 6 723 554 013 mem_uops_retired:all_loads [100,00%]
 0 rob_misc_events:lbr_inserts [100,00%] CPU0
 0 rob_misc_events:lbr_inserts [100.00%]

 0 rob_misc_events:lbr_inserts [66,67%]
 1 686 589 611 mem_uops_retired:all_loads [66,67%] CPU1
 1 684 570 798 mem_uops_retired:all_loads [33,33%]

Without the change

With the change

Google Confidential and Proprietary

● Initial example SNB, CPU0,1 siblings

perf stat -a -C0 -e r81d0 sleep 10 (r81d0: MEM_UOPS_RETIRED:ALL_LOADS)
perf stat -a -C1 -e r20cc sleep 1 (r20cc: ROB_MISC:LBR_INSERTS)

 0 r20cc

● Example with overcommitted counters (multiplexing)

perf stat -a --pfm-event rob_misc_events:lbr_inserts, mem_uops_retired:all_loads,...

USX Protocol: Other Results

Without the change

With the change

 5 091 rob_misc_events:lbr_inserts [79,98%]
 4 594 343 504 mem_uops_retired:all_loads [79,99%]
 4 601 444 895 mem_uops_retired:all_loads [80,02%]
 4 593 376 037 mem_uops_retired:all_loads [80,03%]
 4 595 672 820 mem_uops_retired:all_loads [79,98%]

 0 rob_misc_events:lbr_inserts [49,19%]
 4 118 777 212 mem_uops_retired:all_loads [41,60%]
 4 106 198 318 mem_uops_retired:all_loads [40,29%]
 4 058 269 131 mem_uops_retired:all_loads [46,27%]
 4 200 051 192 mem_uops_retired:all_loads [41,56%]

Google Confidential and Proprietary

Summary

● provided a work-around to unsolved reliability issue on SNB/IVB/HSW
○ no change to the way the workload runs
○ no user-level changes

● all events can now be measured reliably
○ valuable for tools such as Gooda, Perf, GWP

● more reliability at the cost of extra multiplexing
○ need for an optimal scheduling algorithm (Google Optimization Team)

● kernel patches to be pushed to upstream kernel

Google Confidential and Proprietary

References

● Intel SandyBridge specification update

● Intel IvyBridge specification update

● Intel Haswell specification update

● Gooda Tool

● IA-32 Software Developers Manual (SDM) Vol3b September 2013

http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-family-spec-update.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-family-spec-update.html
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://code.google.com/p/gooda/
http://code.google.com/p/gooda/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf

