
Intel® VTune™ Amplifier:
A Bridge to Performance,

Parallelism, and Power

Stanislav Bratanov

Software and Services Group
Intel Corporation
November 21, 2013

2nd CERN Advanced Performance Tuning workshop

‹#›
Software and Services Group

‹#›

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

http://www.intel.com/software/products

‹#›
Software and Services Group

‹#›

Optimization Notice
Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options
that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In
addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel
compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors
than for other microprocessors. While the compilers and libraries in Intel® compiler products offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options you
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to
the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your
business by striving to offer the best performance of any compiler or library; please let us know if
you find we do not.

Notice revision #20101101

‹#›
Software and Services Group

‹#›

Agenda

• How VTune works
• Case Study: NBody app
− Optimizing for performance and power on CPU and GPU

• Conclusions

Plus how we plan to extend it(?)
We need to learn your opinion.

‹#›
Software and Services Group

‹#›

VTune is Big. Let’s cover some of it
Ack: Alexei Alexandrov

‹#›
Software and Services Group

‹#›

First Things You See

Primary
u-arch

analysis

Low-intrusive
sampling

Performance, power, and
parallelism metrics on stacks

GPU HW events

Recommended start

TODO: Reorganize the hierarchy?
 uArch Analysis ->
 General Exploration ->
 CPU specific sets (that match the leaves of GE)

‹#›
Software and Services Group

‹#›

What’s Inside?

JNZ

20

JA

100
20

20

RET

20

thread 0 thread 0wait time

sampling intervals

thread 1 thread 1inactive time

sampling intervals

active time

 Quantum end

 Sync

Timestamp
Wall-clock reference
Event counter values

 Stack

Timestamp
Wall-clock reference
Event counter values

Timestamp
Event counter values

 processElement() à getNextItem() à doTheJob()Stacks

Branches

Switched out because of:
WaitForSingleObject(Handle);

“A0 [rax + rbx*2 + 85]”, “[A0 + rcx*8]”Registers and Memory

IPIIPI

Energy registers (Core, GFX, Package)
Read C-state residencies

Did system wake up
from idleness?

yes

‹#›
Software and Services Group

‹#›

Call Tree + Events + Threading Info

Primary
hotspot

Synchronization
hotspot (wait-spot)

HW events
(e.g., clocks)

Thread
contention

OS
impact

Time lost on
waits

Scheduled
off CPU

Major contention on a
WaitForSingleObject

We lost almost half of
potential performance on
contention: clocks wasted on
contention are comparable
with the time of useful work

TODO: Need to craft a
special contention metric or

a specialized viewpoint?

‹#›
Software and Services Group

‹#›

Same + Active and Idle Power

Almost every wait
brought the system to
idle and then caused a

wakeup

HW
events

Context
switches

Wakeups
from idle

Consumed
energy

(uJoules) Hotspots
Idle
time

Cx state
residency

Wait and
inactive

times

Call stack
System spent only

~10% of idleness in C6
state TODO: Need specialized

metrics or viewpoints to
automate idle power analysis?

‹#›
Software and Services Group

‹#›

Case Study

• NBody application:
− N bodies moving in the gravity field
− Source code attached:
− Runs on CPU and then on GPU
− 64k bodies for CPU, 256k bodies for GPU

> to maintain comparable execution times (similar statistical errors)

− Intel® Core™ i7 3667U
− Intel® HD Graphics 4000

‹#›
Software and Services Group

‹#›

Beginning with the Analysis

Select any region of inactivity
and see sync call stack here

TODO: Need to estimate
the number of iterations?

‹#›
Software and Services Group

‹#›

Locating Threading Inefficiencies

Find thread synchronizations
(that stem from ntdll/wow64)

The performance cost of
thread contention is ~0% of
the primary hotspot => no

performance impact of
thread contention

‹#›
Software and Services Group

‹#›

No Problem, as Predicted

Slight CPU oversubscription is even
better in this case: helps to hide

various stalls

TODO: Need to emphasize this is an
auto-pause we have to generate
not to lose a single event count?

‹#›
Software and Services Group

‹#›

Locating Performance Issues
Expand each column marked

pink until you come to the
actual issue

Here is the problem, read
tooltip to learn more

Pick the actual HW event from the formula (LD_BLOCKS.STORE_FORWARD
– typically counts bigger-size loads blocked by smaller stores to the same

address) for further detailed analysis

‹#›
Software and Services Group

‹#›

Locating Performance Issues

Here is the culprit line…

We’d better switch to SSE
and eliminate both store-

forwarding blocks, and
DIV/SQRT latencies

…and its corresponding
disassembly highlighted

TODO: Need an
instruction stream view

(unroll loops and calls) to
see border effects?

TODO: Need a static-
analysis best-case

performance estimate
to see potential gains?

‹#›
Software and Services Group

‹#›

Eliminating Performance Issues

Done: ~2x speedup
SSE

x87

‹#›
Software and Services Group

‹#›

Joules per Element: Better on GPU

•CPU: ~20255 micro-Joules per element (64k elements)

•GPU: ~2332 micro-Joules per element (256k elements)

•GPU is ~8X more power efficient!

‹#›
Software and Services Group

‹#›

Locating Issues on GPU

Good: GPU fully
utilized

Ugly: High rate of L3 misses
and GPU memory references

Bad: GPU stalled
60% of time

‹#›
Software and Services Group

‹#›

Optimized for Shared Local Memory

Pretty: Utilizing GPU
Shared Local Memory =>

lowered L3 misses

Stalls dropped down to 40%,
gained 10% performance

‹#›
Software and Services Group

‹#›

Avoid Long-Latency Functions

• Some math functions have long latencies in HW
− Compare optimized and non-optimized versions w/o RSQRT:

Non-opt: No speedup w/o RSQRT: memory stalls
ruined the performance

Optimized: ~2.5X speedup w/o RSQRT. ~2X lower stalls

‹#›
Software and Services Group

‹#›

Locating Idle Power Leaks

Sleep() in OpenCL runtime both wastes active time and doesn’t
let the system go to C-states.

Note that Sleep(0) is in many cases just an inefficient spin-wait

Our code wakes the system up but lets the
system stay in C6 for 15% of idleness

(Idle_Time / C6_Residency)

‹#›
Software and Services Group

‹#›

Case Study Summary

• We scrutinized a parallel app, and:
− Proved there are no threading issues
− Found & eliminated a performance issue
− Measured energy per element
− Improved energy consumption 8x by moving from CPU to GPU
− Found inefficiency in GPU memory usage
− Optimized program and gained 10%

> Could gain 2.5x, but were impeded by RSQRT

− Can lower idle power consumption by minimizing wake-ups
 in OpenCL runtime

‹#›
Software and Services Group

‹#›

Conclusions

• Intel® VTune™ Amplifier XE:
−Facilitates micro-architectural analysis
−Uncovers software execution logic
−Reveals threading inefficiencies and cost of parallelism
−Correlates performance/power/parallelism metrics
−Is a

bridge
 between
 you and
 detailed SW
 analysis

‹#›
Software and Services Group

‹#›

	Intel® VTune™ Amplifier: �A Bridge to Performance, Parallelism, and Power
	Legal Disclaimer
	Optimization Notice
	Agenda
	VTune is Big. Let’s cover some of it
	First Things You See
	What’s Inside?
	Call Tree + Events + Threading Info
	Same + Active and Idle Power
	Case Study
	Beginning with the Analysis
	Locating Threading Inefficiencies
	No Problem, as Predicted
	Locating Performance Issues
	Locating Performance Issues
	Eliminating Performance Issues
	Joules per Element: Better on GPU
	Locating Issues on GPU
	Optimized for Shared Local Memory
	Avoid Long-Latency Functions
	Locating Idle Power Leaks
	Case Study Summary
	Conclusions
	Slide Number 24

