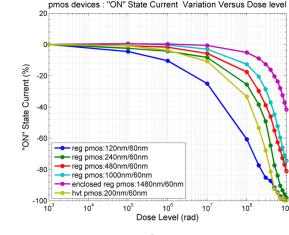
Status and plans of RD53

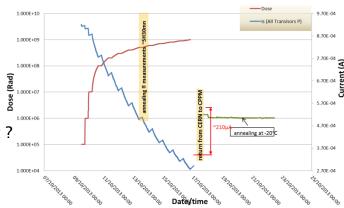
Jorgen Christiansen, CERN PH-ESE

General

- Spokes persons and Institute chair elected
 - SP's: ATLAS: Maurice Garcia-Sciveres, LBNL
 - CMS: Jorgen Christiansen, CERN
 - IB chair: Lino Demaria, Torino
- We have had our first formal IB meeting
 - 2-3 times per year
- Planning first (2nd) RD53 workshop for spring 2014 at CERN
 - Finding good date is a real pain.
- 3 additional institutes have requested to become members: OMEGA, Milano, Czech Technical University + institute of physics, (Sevillia ?, Taiwan ?).


• We have a preference to get organized before welcoming new institutes.

- MOU in the pipeline.
- RD53 is getting rather well known as a good example of a focussed ATLAS/CMS R&D:
 - Now we have to prove that this works efficiently !.
- Some working groups have gotten started (to get organized)
- Some RD53 institutes have gotten funding (INFN)


Radiation WG

- ▶ Goals: Radiation test and qualification of 65nm
 - Radiation test procedure -> Report
 - Test of basic devices -> Report
 - Test of digital cells (standard cell library)
 - Spice models of radiated devices
 - Recommendations to designers
 - (Evaluation of alternative technologies if required)
- Convener: Marlon Barbero (CPPM)
- 2 meetings held
- Coordination of radiation test structures and radiation tests
- Radiation test procedure document in the pipeline
- If chips kept cold (-20 20 deg. C) then signs of problems with PMOS at ~100Mrad radiation levels
 - Annealing:
 - -20: None ?
 - Room: Some annealing, but how much ?
 - Hot (80 100): Good annealing but how much and how fast ?
 - Annealing will be a critical aspect for pixel phase 2
 - Running scenario: -20 deg with ~2weeks at room temperature per year
 - We should soon have more annealing results from CPPM with CERN test structures.

We will get 100MRad per year in inner layer !

consumption current for all Pmos devices vs dose

Analog WG

- Goals:
 - Analog front-end(s)
 - For different sensors
 - Different architectures (TOT, ADC, Auto zeroing, etc.)
 - \circ In the end we will need 1–2 for ATLAS/CMS
 - Area, power, noise, dead-time, radiation tolerance, linearity, simplicity, , ,
 - Basic analog building blocks (references, bias DAC, etc.)
 - Coordination with IP blocks WG
- Convener: Valerio Re
- First meeting with presentation from institutes
 - Many groups wants to look at "their" specific architecture
- To be defined how work across groups and different architectures can be best optimized for our final goal.
 Not just individual non-connected designs

Simulation

• Goals:

- One common simulation and verification framework
- Evaluation of different architectures with this framework
- Definition of how to include IP block in simulation
- Verification of final designs
- Convener: Tomasz Hemperek (Bonn)
- First meeting with presentations of groups interested:
 - Bonn, Perugia, CERN, NIKHEF (mixed signal, DFT), (LBNL, PISA, RAL
- Simulation language/tool
 - System Verilog + UVM (Mini workshop @CERN)
 - C++ or other
- First goals:
 - Tool/language
 - General framework architecture
 - Shared repository
 - Defined interfaces
 - Define who contributes what

IP blocks

- Goal: Implement required basic building blocks
 - Define list of required IPs and who makes what
 - Standardized requirements for IPs
 - Use of metal layers, pins, analog/digital isolation, , ,
 - For each IP: Specifications, design, prototyping, test, radiation hardness, documentation, simulation model, available on IP repository for RD53
- Convener: Not yet assigned
 - J.C. will bootstrap until "things" more clear and convener can be found
- Short term goal:
 - List of IPs (20 50) and make interest matrix across RD53 groups
 - Assign an institute(s) to each needed IP

Top level

- Goals: Define appropriate schemes and tools to integrate complex mixed signal functions into working pixel chip
 - Layout (e.g. Technology options, layer mapping), powering, noise coupling, Final design verification,
- Convener: not yet assigned
 - M.G.C. will bootstrap until "things" more clear and convener can be found
- Short term goals:
 - Understand what is covers and what is required

I/O

- Goals
 - Define standardized I/O interface of pixel chips
 - Define and implement I/O blocks
 - Some overlap with IP blocks

Standardized pixel chip interfaces also allows to standardize pixel chip test systems

Convener: Not yet assigned

Additional domains for "RD53"?

- TSV (affects TOP, IO and IP WGs)
 - Coarse TSV to get power and IO signals out on back side and have much less module overlap caused by wire-bonding.
- Standardized/common test systems: hardware, firmware, software
 - For "near" final pixel chips (not for small block submissions)
- High speed readout on low mass cables
 - Speed, distance, cable, ,
 - Interface to optical links (LPGBT)
- Powering
 - DC/DC versus Serial powering
 - On-chip power conversion
 - Off-chip power conversion
- Module design/cooling
- Other ?