What needs to be investigated and studied for pixel phase2 electronics (For TP)

Jorgen Christiansen, CERN PH-ESE

We need a "Baseline"

- TP reference point: What to study in more details and possible options
- Layout:
 - Phase1 pixel with extra disks
 - Location of opto/power services ?
 - (Performance, physics, ,)
- Trigger:
 - 1MHz, 500KHz ?
 - 20us , 10us ?
 - Pixel participation in L1 ?
- Pixel chip
 - RD53: Technology, Basic pixel architecture, tools, IPs, ,
 - CMS specific: Sensor, Pixel size/aspect, Trigger rate/latency, L1 trigger contribution
- System:
 - Readout/links
 - Powering
 - Module design
 - Cooling/mechanics

• ?

Menu of what has to be done and find/assign groups/people to this: This gets urgent for TP but so far very few groups/people ! (phase 1 in parallel) For many of these aspects it only makes sense to work closely with ATLAS but for the TP we (CMS) will have to propose a viable system

Pixel chip "menu".

- Investigate trigger latency pixel size issue
- (L1 trigger contribution: option)
- Rest is general RD53
 - Where CMS contributions are also vital

Readout "menu"

- Readout data rates
 - Trigger rate
 - Hit rate confirmations
 - Despite uncertainties on layout and sensor
 - Data formatting/compression
 - Track/cluster position extraction
- Readout links
 - Option of Opto on module
 - Dedicated link chip/built-in versus LPGBT
 - Use and requirements to LPGTB (local/remote)
 - Specification group will soon start work.
 - Electrical links: speed, low mass cable, distance, Cable driver, Cable receiver
 - Location and configuration of remote opto module

Powering "menu"

- Power
 - Pixel chip: On-chip: DC/DC, shunt, LDO, etc. ?
 - Optical link: Link interface chip + laser
 - HV
 - Safety/protection aspects
 - Power cabling
 - Bulk power supplies
- Powering options
 - DC/DC: Dynamic variations ("low" power)
 - A. As for phase 1: Remote DC/DC (1-2m)
 - **B.** Fully on pixel module DC/DC
 - C. Combined remote and on module (and on-chip)
 - Serial powering: Constant module power ("higher" power)
 - A. With-in pixel module (4 8 pixel chips)
 - B. Between pixel modules
 - C. On-chip versus on-module shunt regulator
 - D. Intermediate remote DC/DC feeding serial power loops

Pixel module "menu"

- Module integration/assembly
 - Hybrid technology
 - Interconnect:
 - Chip wire bonding / flip chip / TSV
 - Sensor pixel chip bump–bonding
- Cooling
 - Power density: ¹/₄ 1W/cm² ?
 - Impact on material budget
- System integration:
 - Individual modules
 - Stave (barrel disks)

Not urgent

All the off-detector pixel electronics COTS based

TP

- Urgent (6 months) to converge to realistic baseline pixel detector/electronics
 - Phase 1 like does NOT work:
 - Completely new pixel chip/architecture/technology
 - 100x higher readout rates
 - Power requirements very different
 - DC/DC -> serial powering ?
 - Not "allowed" to have "heavy" service cylinder ?
 - We do not have time to set up extensive collaboration/studies with ATLAS on system aspects for our TP.
 - But we should make such collaboration independently of urgency of TP.
- The writing of the few pixel TP pages is the easy part when/if we have a viable implementation worked out.
- We urgently need people to start working on systems aspects ("clash" with pixel phase 1 upgrade)