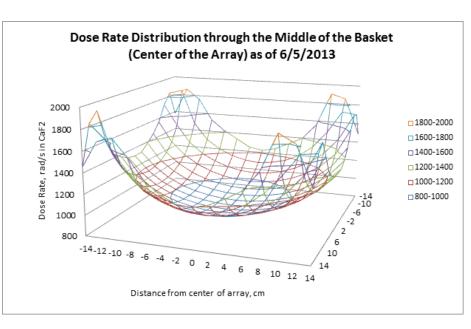
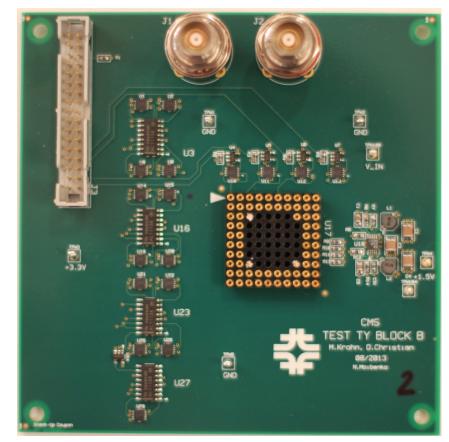
Fermilab Electronics Development Plans

David Christian Fermilab November 20, 2013


Primary Activities 2013-2014

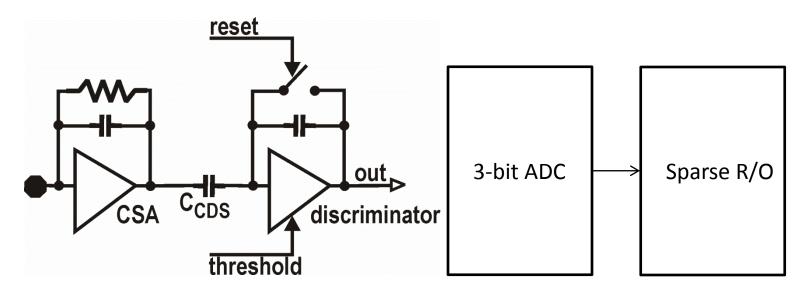
- Radiation tolerance studies (RD53)
 - 130 and 65nm ICs (mostly transistors) designed at FNAL, fabricated by Global Foundries & TSMC
 - 130nm results will validate our methods
 - 65nm results will extend comprehensive tests to ~1 Grad
 - Gamma irradiation Sandia National Lab
 - Coordinated by Steve Wagner (Colorado)
 - Major contribution from Michael Krohn (Colorado graduate student)
 - 1st irradiations will be of room temperature devices, but we plan to irradiate cold devices (-20C?) if possible
- Readout chip for array of 30µx100µ pixels
 - 130nm CMOS (GF)
 - Goals:
 - Explore how small a pixel is possible.
 - Demonstrate low threshold ($\leq 1000 e^{-}$) operation.
 - Provide a device for sensor R&D.

Sandia Gamma Irradiation Facility


- <u>http://www.sandia.gov/research/facilities/gam</u> <u>ma_irradiation_facility.html</u>
- Three test cells with arrays of ⁶⁰Co sources (1 MeV gammas)
 - Sources shielded in pool of water; raised above water for irradiation
 - Sample held in basket above pool.
 - High dose rate possible
 - 1krad/sec typical (3.6Mrad/hr)
 - Large area with approx equal dose rate.

Measurement PCBs

- Test ICs bonded in pin grid arrays.
 - ~20 transistors bonded per package
- PCB provides power for protection diodes and connects SMUs to one transistor at a time
- Labview program selects which current switches are active – connects one SMU to transistor source/drain & the other to transistor gate.


Simple "Portable" Measurement Apparatus

- For each transistor:
 - Set $|V_{ds}| = V_{dd}$
 - Sweep Vg $(0 V_{dd})$
 - Measure $I_{ds} \& I_{g}$
- Extract
 - Leakage current (off state)
 - Transconductance g_m(max)
 - Threshold voltage V_T

Small-Pixel Readout Chip

Pixel Unit Cell

- Both FE cells use a synchronous front end, reset @40MHz:
 - Correlated double sampling with Δt =25ns removes low frequency noise.
 - Greatly reduces sensitivity to pile-up.
 - Designed so that current draw does not change during reset.

Simulation of Preamp#1 Yields Noise < 100 e⁻

- Correlated double sampling adds a small amount of noise (total noise = 62 e- at C_{in} = 30 fF)
- Power Consumption: 5μA (preamp) + 8μA (all comparators)
 - $433 \text{ mA/cm}^2 = .65 \text{W/cm}^2 (1.5 \text{V})$

Test ROC timeline

- Fabricate test ROC in Global Foundries 130nm CMOS
 - Submission expected in January 2014
- Test bare dice
 - March April 2014
- If OK
 - Bond to sensors included on Phase-1 prototype sensor wafer
 - Bond to diamond sensors (Colorado)
 - Bench test with sources
 - Beam test
- Translate (at least analog circuits) to 65nm (as part of RD53)
 - Fabricate either small blocks or ROC
 - Compare circuit performance w/130nm version