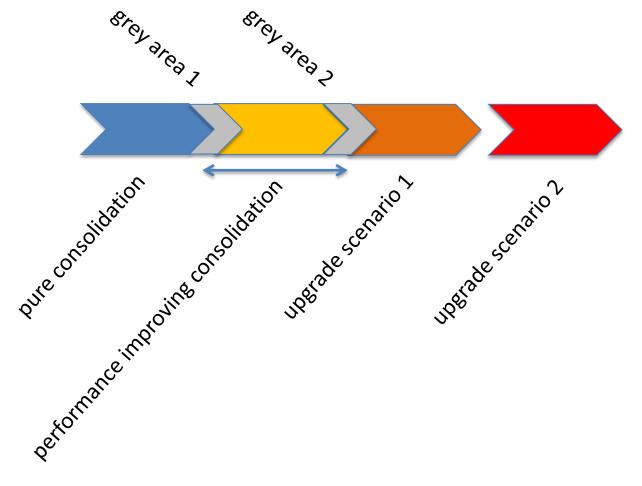
Session 3 Performance Improving Consolidation and Upgrade scenario 1

Malika Meddahi, Lucio Rossi

Thanks to all speakers and contributors

Setting the scene

PIC: PERFORMANCE IMPROVING CONSOLIDATION:


Replacement or upgrade of a system justified by consolidation but with the goal of improving performance

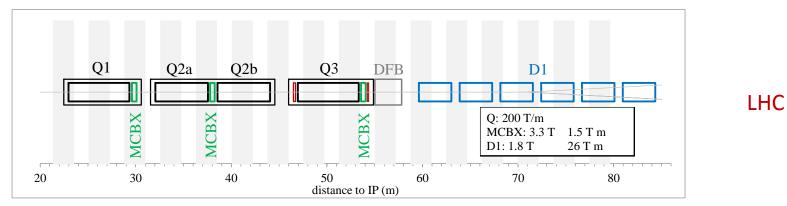
	PIC	Upgrade scenario 1	Upgrade scenario 2
Initial integrated luminosity (fb ⁻¹)	300	300	300
Integrated luminosity after 10 years of operation (fb ⁻¹)	1000	2000	3000
Yearly luminosity target (fb ⁻¹)	70	170	270

Which beam parameters can reach these targets? What are the related actions on the equipment?

PICs in the injectors: What are we talking about? - K. Hanke

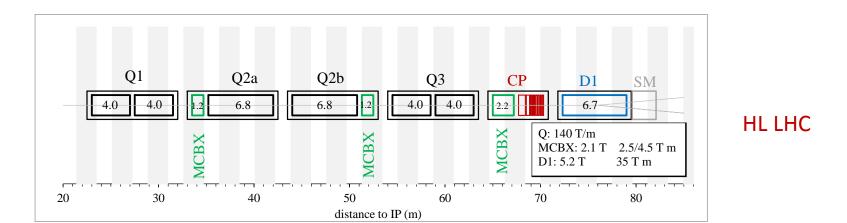
Clear PIC definition but some overlaps and grey zone with pure consolidation and US 1 and 2.

Time drivers and minimum single block
LIU-PSB: minimum single block 12 m
LIU-PS: minimum single block 3 m
LIU-SPS: minimum single block 6 m
=> all time estimates depend strongly on available resources (manpower)
=> consequent amount of work to be done in parallel for all machine
=> to be considered with the Cons, maintenance, upgrade preparatory work


• Cost of PICs

LIU-PSB: 50 MCHF (essentially LIU-PSB budget ~61MCHF)
LIU-PS: 16 MCHF (80% of total budget 20 MCHF)
LIU-SPS: 23 MCHF (30% of total budget 77 MCF)

PICs are mandatory and must be fully implemented in LS2 in the injectors regardless of which upgrade scenario is chosen


PICs in the LHC: What are we talking about? - P. Fessia

Interaction region layouts

Aperture ~twice the LHC baseline (70 mm to 150 mm),

but more compact triplet layout thanks to Nb₃Sn and superconductive D1

LHC PICs in short

- PIC actions
 - Concern practically all the sectors of the machine
 - They are spread between the 1st long technical stop after LS1 and LS3
- Interaction region interventions in IP 1 and 5 provide safe operation for 2025->2035 years and the required luminosity capacity
- Collimation interventions push down the whole machine impedance providing more robust collimators and ensure safe ion run in IP2.
- Beam diagnostic interventions provide the necessary diagnostic capacity, with hardware compatible with the higher radiation dose
- Sc links provide a solution to radiation electronic issues for the Power converters, but also contribute in reducing collective dose and interventions time
- Cryoplant at point 4 provides flexibility in the management of the RF interventions and eliminate the 1st machine bottleneck in term of cooling capacity. All cryo installation have to be performed with a long term view in the installation/integration perspective (foresee for future needs)
- High radiation dose call for radiation management and possible reconfiguration to provide the best possible reliability and access conditions. Radiation tolerant electronic development (including R&D and testing) will affect several equipment groups (costs, resources)

PICs: what do we gain in beam performance? – G. Arduini

PIC @ 6.5 TeV (Pile-up limit at 140)

	ε* _{n coll} [μm]	Opt. Fill length	η _{6h} /η _{opt} [%]	φ _{6h} /φ _{opt} [%]	Int. Lumi for η=50% for 6h	Max. Mean Pile-up density/Pile-up
		2012	Goal	2012	/opt. fill length	[ev./mm]/[ev./xing]
		6h	<50%	36%	Goal > 70 fb ⁻¹	<1.3/<140
BCMS - 40/20	1.85	6.5	37/37	25/26	93/94	0.97/84
Standard - 40/20	2.25	7.3	40/40	27/28	87/88	0.79/69
BCMS – 50/25	1.85	6.8	39/39	26/27	89/89	0.77/78
Standard – 50/25	2.25	7.6	43/42	28/30	82/83	0.63/64

- I/b= 1.38e11/b in collision
- The luminosity target can be reached with 40/20 optics
- BCMS (Batch Compression Merging and Splitting): slightly higher performance but more sensitive than standard scheme to additive sources of emittance blow-up
- 50/25 optics provides margin in aperture and offers a reduction of the pile-up density below 0.7 events/mm
- Key questions and studies required in Run 2 have been sketched Understanding and Control of the sources of blow-up; Confirmation of the feasibility of β*-levelling as a possible solution for IP8; Confirmation of the feasibility of scrubbing the dipoles down to SEY=1.3-1.4 possibly with dedicated beams; Full understanding of the stability limits for single and two-beams

Which beams in the injectors fulfil HL-LHC Upgrade Scenario 1 goals? S. Gilardoni

	LHC	collision	SPS	extraction
Standard Scheme	Int/b	Emitt* (µrad)	Int/b	Emitt* (µrad)
US1 Baseline	1.50E+11	1.5	1.58E+11	- 1.25
US1 low emit.	1.20E+11	1	1.26E+11	. 0.83
US1 LIU SPS LLRF 200 MHz upgrade	1.38E+11	1.64	1.45E+11	. 1.37
US1 LIU SPS 200 MHz full upgrade	1.90E+11	2.26	2.00E+11	1.88
BCMS				
US1 Baseline with BCMS	1.50E+11	1.5	1.58E+11	- 1.25
US1 low emittance with BCMS	1.20E+11	4	1.26E+11	. 0.83
US1 LIU SPS LLRF 200 MHz upgrade	1.38E+11	1.09	1.45E+11	0.91
US1 LIU SPS 200 MHz full upgrade	1.90E+11	1.64	2.00E+11	1.37

Large bunch intensity in LHC more important than low emittances

200 MHz RF Upgrade necessary to match the preferred requirements of LHC-US1 with unchanged longitudinal parameters at LHC injection.

LIU US1 ≣ LIU US2

→Oliver analysis based on evaluation of non-crossed out cases and with variations of the beam emittance

HL-LHC for US1? – O. Bruening

- US1 flat beams; SPS with new LLRF system and with the RF power upgrade
- N at collisions = 1.9 10¹¹ppb
- n = 2508 colliding pairs in IR1 and IR5 (revised BCMS filling scheme)
- normalized emittance = 2.65 micrometer (> 70% blow-up wrt SPS extraction)
- flat beams with beta* = 0.4m / 0.1m
- beam separation of 10 sigma -> crossing angle of 310 microrad
- IBS growth rates of ca. 22h horizontally and 25h longitudinally (scaled)
- Peak Luminosity = $8 \ 10^{34} \ \text{cm}^{-2} \ \text{s}^{-1}$
- Leveling time = 2.9 h; Lumi decay time = 4 h; Turnaround time = 3 hours
- Total fill length (leveling + decay + turnaround) = 9.9h
- Integrated Lumi per fill =1.06 fb⁻¹; Lumi per year for perfect operation = 413fb⁻¹
- Required efficiency for achieving 170fb⁻¹ per year = 41%

==> this case could reach the US1 goals and is OK from the IBS point of view, requiring essentially TAS and TAN upgrades

HL-LHC for US1 – O. Bruening

- Beam-Beam Wire compensator is very important for US1. Optimum position at $10\sigma \rightarrow$ integration aspects with Collimation System!
- Small emittance beams from LIU upgrade can not really be utilized in the LHC for US1 due to IBS limitations .
- US1 goals compatible with full SPS upgrade and HL-LHC PIC when operating with flat beams (40cm/20cm). Smaller β* (e.g. 40cm/10cm) can provide more performance (>20%) but requires some Matching Section upgrades

Work effort in the LHC accelerator for US1 – E. Todesco

- Upgrade scenario 1 work effort
 - Same peak lumi as US2 (heat loads), and 2/3 of data (radiation damage) many unknowns to be seen with 7 TeV operation
 - New triplet/D1 as defined for PIC allows to swallow larger heat loads, and radiation damage
 - Matching section becomes a bottelneck for β* (not lower than 30 cm), but can swallow heat load and radiation damage
 - Scenario relies on ability to increase beam intensity
- Work effort
 - Collimators in IR7, IR1, IR5
 - Superconductive link for matching sections in IR1 and IR5
 - Beam-beam long range wire compensator needed
 - New piece of hardware, not yet proved for LHC
 - Proof of principle for the LHC in ~2017

Work Effort in the LHC Injector Complex, Including Linac4 Connection, for the Upgrade Scenarios – Jean-Baptiste Lallement, Bettina Mikulec

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Linac2/Linac4 interface																				
Cool down																				
Line removal up to BHZ.20																				
DC cable path																				
Emergency exit door																				
Château																				
Chicane																				
Shielding wall																				
Line installation																				
L2 tunnel access door																				
LBE line																				
Cool down																				
Removal of L2 LBE																				
Installation of L4 LBE																				
Cabling																				
Beam commissioning																\square	())	(1)	(1)	$\langle \rangle \rangle$

Linac4 : 15 weeks to deliver a beam to the PSB

Overall L4 Connection to PSB

	///																		BE							
																	njecto	ed in	to PS		nject	ed in	to PS			
Month		D	J		F			М		A	N	_	J		1		Α		S		0		N		D	
	46 47 48	49 50 51 52	1 2	3 4 !	5 6 7	89	10 11	1 12 13	14 15 1	16 17	18 19 2	21 2	22 23 24 2	5 26 2	7 28 29	30 31	32 33 3	34 35	36 37 3	8 39 4	10 41 4	2 43 44	45 46	47 48 49	50 51	52
PSB	-											-						_								
EN-EL		Rack installation and cabling preparation	Лаs			Cal	bling ca	ampaign										V	Ľ							
L4 connection phase		Cool-down and preparation					Insta	allation					Kicker HV testing - cold check-out	+ Co	ommissioning Preparati	injection wit on of LHC pro		Prepa LH pro bea	c d.		Preparation	n of remainin	g beam phys	ics		
Linac4							-																			
L4/L2 interface		Cool-down		L4/L	2 interface								Beam			Ream	NAMMENO	198				LHC	produ	uction l	beam	۱
LBE		Cool-down				Soul	helawn.				LBE upgra	de	commissionir	ng								inj	ected	l into L	HC	
LHC																										
Possibilities of and ion run	Beam commissic for ior	oning up to SPS h run X-N	Лas		15 we	eeks - 3	.5 mon	ths			19	Week	s - 4.5 mon	ths CMS	S Pixel De	etector i	nstallati	on								
Protons									40 weeks	s - 9.2 n	nonths															
																			1 in		CPILC ed int	DT to LHC				

Duration for the Linac4 connection to the PSB: 9.2 months \geq

- Deliverable: LHC production beam injected into PS; coincides with injection of LHCPILOT beam into the LHC Other physics beams to follow at an estimated rate of ~ 2 /week \succ
- First beam to the PS after 9 months >
- Ion run and CMS pixel detector installation in parallel? \geq
 - Ion beam commissioning in LHC ion injector chain end of 2016 in parallel to p run
 - LHC ion run of up to 3.5 month after X-mas CMS pixel detector installation: 4.5 months Could other activities profit? (NA61/SHINE etc.)

LIU LS2 Planning

Month	D J F M A M J J A S O N D J F	M A M J J A	S O N D
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	2 1 2 1 2 1 2 1 2 1 2 1 2 1	2 1 2 1 2 1 2 1 2
PSB			
L4 connection + 2 GeV upgrade	PSB LS2 works - 15 months	Beam good a commissioning LHCPROBE	
PS			
2 GeV injection and other upgrades/cons.	PS LS2 works - 14.5 months	Beam gint comm. LHCPROBE	
SPS			
US1+US2; aC- coating, 200 MHz RF etc.	SPS LS2 works - 16.5 months	comm.	LHC prod. beam (scrub!)
LHC			
Protons	Shutdown - 20.2 months		Recommission LHC with beam

<u>LS2:</u>

- Time line driven by PSB activities (impressive cabling work to be performed -> coherent scheduling in progress taking into account the overall requests needed for other projects)
 - > PSB first beam (LHCPROBE) to the PS: after 17.5 months
 - PS ready for beam from PSB already after 14.5 months -> need to gain 3 m in PSB
 - SPS ready for beam from PS: after 16.5 months
- \rightarrow First injection of <u>LHCPILOT into the LHC</u>: after ~20.5 months
- → Minimum time for injection of <u>LHC production beam into the LHC</u>: after ~22 months (scrubbing!)

Summary of session 3 (1/2)

- PICs
 - Need to be fully implemented in the LIU regardless of the chosen Upgrade Scenario.
 - PICs (new triplet+collimation upgrade+ Cryo...) are mandatory for future HL-LHC operation
 - PICs provide at least 70 fb⁻¹ / year and fulfil the 1000 fb⁻¹ target sets for the PICs only scenario until 10 y operation to 2035
- Upgrade scenario 1
 - Means Full Upgrade of the injectors (identical upgrade to scenario 2)
 - Allows reaching the set target of 2000 fb⁻¹ (170 fb⁻¹/y) using 'smaller' emittance beams

Summary of session 3 (2/2)

- Schedule
 - Coordinated effort to plan all the upgrade implementation is to be started, taking into account all needed resources for LIU, HL-LHC but also CONS and other requests
 - Should cover a longer time span (few LS)
 - LS2: LIU implementation to be ready for post-LS3 operation
 - LS2 should be at least 18 months

