

RLIUP

29 – 30 October 2013

Session 4 Summary

"Upgrade Scenario 2 and alternatives"

R. Garoby, B. Goddard

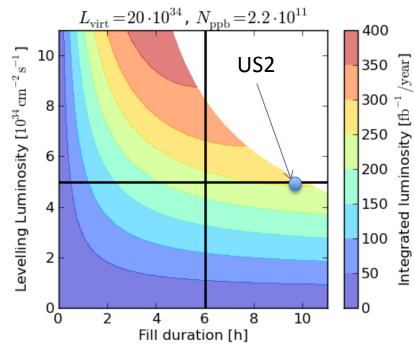
Agenda

- 1. How to maximize the HL-LHC performance (HL-LHC)? R. De Maria
- 2. Can we ever reach the HL-LHC requirements with the injectors (LIU)?
 - H. Bartosik
- 3. How to implement all the HL-LHC upgrades (HL-LHC)? L. Rossi
- **4. HL-LHC: Exploring alternative ideas -** R. Tomas
- 5. LIU: Exploring alternative ideas H. Damerau
- 6. How to reach the required availability of LHC to reach the required level?
 - M. Lamont
- **7. 50 ns back-up scenario -** V. Kain

+ from Session 3:

Work effort in the LHC injector complex for upgrade scenarios

- B. Mikulec & J. B. Lallement


How to maximise the HL-LHC performance [1/3]

R. De Maria

 HL experiments accept 140 events/crossing, with 1.3 mm⁻¹ density (performance limit with impact

on efficiency)

Long fills (>6 h) and high
 pile-up (>140) are key
 ingredients for US2
 integrated luminosity target.

 Main challenges besides e-cloud: effective leveling method and good reliability.

How to maximise the HL-LHC performance [2/3] R. De Maria

- Requirements to approach 270 fb⁻¹/y baseline
 - Maximum bunch population (\Rightarrow reduced collimators impedance etc.)
 - 25 ns with $1.9-2.2\times10^{11}$ p+/b (no e-cloud issues, beams stable)
 - Minimum β^* (~15-10 cm, with rebuilding IR1/5 insertions)
 - Leveling via β^* (important to deploy in P8 during Run2)
 - Crab cavities, flat beams at IP to mitigate geometric reduction
 - Need longer fills than the 2012 average of 6h.

Other messages

- Beam characteristics of LIU baseline are OK for reaching US2 goals
- Min. ε_{xv} ² μm in collision (1.6 μm from SPS for 40% LHC blowup)
- Handle on pile-up density with crab-kissing, long/flattened bunches
- Flat beams at IP and wire interesting to reduce crabbing requirements and opening to the kissing scheme

How to maximise the HL-LHC performance [3/3]

R. De Maria

Performance at 6.5 TeV

	N _{b coll} [10 ¹¹]	ε* _{n coll} [μm]	Min β* (xing / sep) [cm]	Xing angle [µrad]	# Coll. Bunches IP1,5	L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]	L _{lev} [10 ³⁴ cm ⁻² s ⁻¹]	Lev. time [h]	Opt. Fill length [h]	η _{6h} [%]	η _{opt} [%]	Avg. Peak- pile-up density [ev./mm]
RLIUP2	1.5	$1.3^{6)}$	15/15	366	2592	17.6	4.8	4.4	5.8	64.6	64.6	0.88
LIU-BCMS	1.9	$1.65^{6)}$	13.5/13.5 ³⁾	420	2592	21.7	4.8	6.3	7.5	61.0	58.4	0.94
LIU-STD	1.9	2.26	14.5/14.5 ³⁾	474	2736	15.8	5.06	5.3	6.9	58.2	57.5	0.97
HL-Flat	2.2	2.5	30/0.0751)	348 ²⁾ /550	2736	17.2	5.06	6.5	8.0	57.8	54.5	1.05
HL-Round	2.2	2.5	15/15	490 ²⁾ /590	2736	18.7	5.06	6.8	8.2	57.8	54.0	1.05
LIU-BCMS	1.9	1.65	13.5/13.5 ³⁾	420	2592	21.7	6.87 ⁵⁾	4.3	6.2	52.2	52.2	1.34
HL-Round	2.2	2.5	15/15 ³⁾	490	2736	17.2	7.24 ⁵⁾	5.4	7.3	48.8	48.4	1.37
HL-SRound	2.2	2.5	<i>10/10⁴⁾</i>	600	2736	18.7	7.24 ⁵⁾	4.4	6.7	47.7	46.4	1.55

- 1) compatible with crab kissing scheme (S. Fartoukh).
- 2) BBLR wire compensator assumed to allow 10σ.
- 3) β^* could be reduced to 14.5 and 13.5 cm at constant aperture.
- 4) Ultimate collimation settings.
- 5) Pile-up limit at 200 event/ crossing.
- 6) 30% blow-up from IBS makes 1.85 um is more likely

How to implement all the HL-LHC upgrades [1/2]

L. Rossi

- Vast amount of work around a significant fraction of the ring (1.2 km). New triplets and deep changes in IP1 and 5.
- Some work to be done in LS2 (DS collimators in IP2/7, horizontal SC links in IR7, additional cryoplant in P4, some reduced impedance collimators)
 - Work should fit inside 18 months
- Major part planned for LS3
 - work should fit inside 26 months
- Detailed shutdowns plannings required to handle massive co-activities and radiation doses to personnel.

	remaining dose radiation enhancement factor w.r.t. June 2013 (6 months of cooling after RUN I)
LS2 (2019)	3.4
LS3 (2022)	4.3
PIC (2035)	7
US1(2035)	15
US2(2035)	22.7

Total cost (material): 810 MCHF

How to implement all the HL-LHC upgrades [2/2]

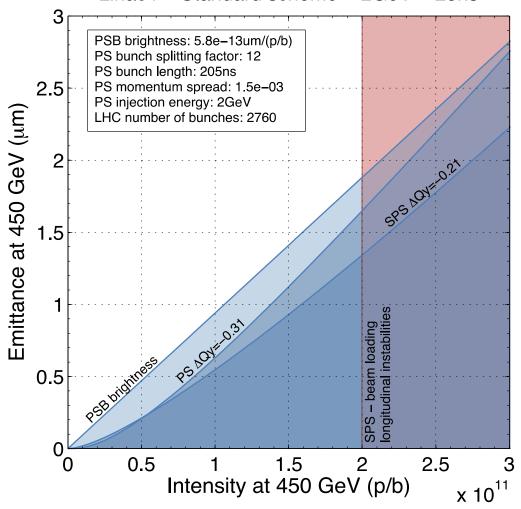
L. Rossi

- Other potentially beneficial systems actively under study
 - 800 MHz (additional) and 200 MHz (new main) RF systems
 - Hollow e-lens
 - LRBB wire compensator
 - Crystal collimation
- Design Study finished by 2015 with TDR.
- «All hardware more robust for 3000 fb⁻¹ than it is today for 300 fb⁻¹».
- Clear interest to establish margins in the machine to eventually reach above 3000 fb^{-1} if limitation on peak pile-up can be relaxed, e.g. to run at $7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (200 pile-up).

Can we ever reach the HL-LHC requirements with the injectors (LIU)? [1/3]

H.Bartosik

"Yes... with the full LIU work programme:


- All PICs + Linac4
- All upgrades for PSB, PS (2 GeV + RF) and SPS (esp. 200 MHz high power RF upgrade)
- SPS e-cloud mitigation

Can we ever reach the HL-LHC requirements with the injectors (LIU)? [2/3]

H.Bartosik

Linac4 – Standard scheme – 2GeV – 25ns

LIU upgrades

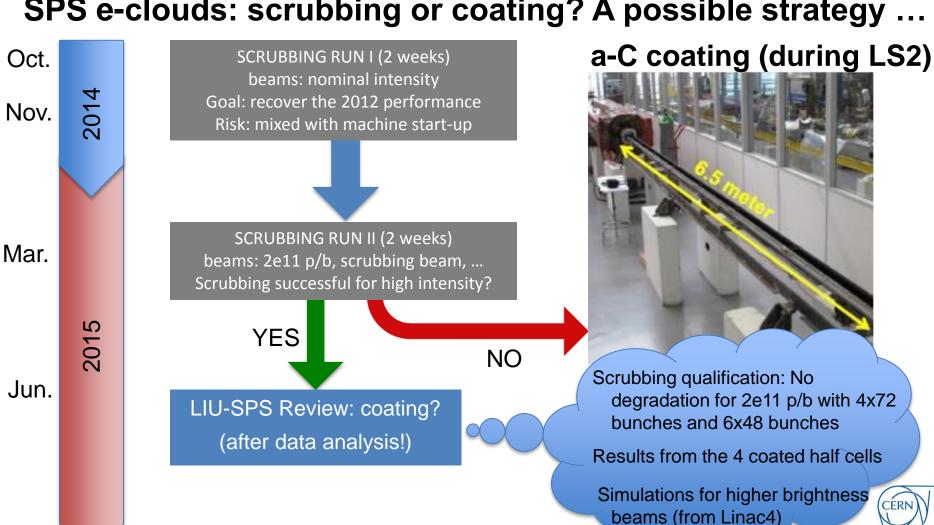
- SPS 200 MHz upgrade
- SPS e-cloud mitigation
- PSB-PS transfer at 2 GeV

Limitations standard scheme

- SPS: longitudinal instabilities + beam loading
- PSB: brightness

Performance reach

- 2.0x10¹¹p/b in 1.88μm (@ 450GeV)
- 1.9x10¹¹p/b in 2.26μm (in collision)



Can we ever reach the HL-LHC requirements with the injectors (LIU)? [3/3]

H.Bartosik

SPS e-clouds: scrubbing or coating? A possible strategy ...

Work effort in the LHC injector complex for upgrade scenarios

B.Mikulec, J.B. Lallement

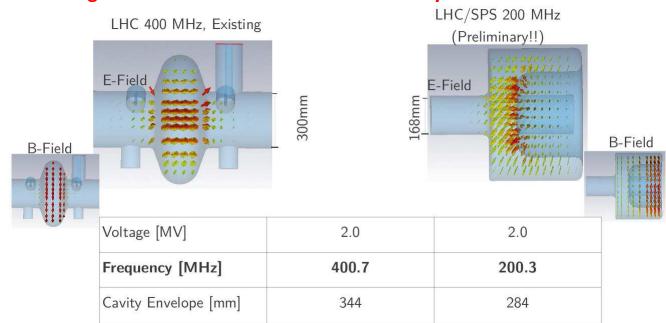
Linac4 connection to the PSB during an intermediate shutdown:

9.2 months (LHC Pilot)

All LIU upgrades during LS2:

20.5 months (LHC Pilot)

22 months (LHC Production)


Month	Ī)		J	Ι	F		N	1	Α		N	И		J	J		P	1		S		0		N		D		J	Ī	F	ı	VI	Α		М		J		J		Α		S	0		N		D	
	1	2	1	2		1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	1 2	1	1 2	1	2	1	2	1	2	1	2	1 2	2 1	. 2	1	2	1	. 2	1	2	1	2	1	2 :	1 2	
PSB																				Ť				, and the second																										
L4 connection + 2 GeV upgrade		PSB LS2 works - 15 months															Beam commissioning LHCPROBE																																	
PS																																																		
2 GeV injection and other upgrades/cons.		PS LS2 works - 14.5 months															Beam comm. LHCPROBE																																	
SPS																																																		
US1+US2; aC- coating, 200 MHz RF etc.		SPS LS2 works - 16.5 months																						c	Bea om ICPI			C pi bea scru																						
LHC																																																		
Protons																			Shu	utdo	own	- 2	0.2	mc	onth	S																	Recommission LHC with beam							

HL-LHC: Exploring alternative ideas [1/2] R.Tomas

Alternatives:

- 8b+4e from the injectors $(2.4\times10^{11} \text{ p/b})$ (test possible in 2014-2015):
 - ⇒ much less e clouds than 25 ns
 - ⇒ much better luminosity than 50 ns (with achievable intensity of <3E11 p/b)
- 200 MHz main RF in LHC (~2.5×10¹¹ p/b):
 - ⇒ larger longitudinal emittance / higher intensity from SPS
 - ⇒ less e cloud effects and less heating than with 400 MHz
 - ⇒interesting also in US2 with or without crab cavity

HL-LHC: Exploring alternative ideas [2/2] R.Tomas

Other possibilities:

- Pile-up density levelling:
 - ⇒ Lower integrated luminosity.
- Pile-up density reduction with "crab-kissing":
 - \Rightarrow Potential for reduction to 0.65 mm⁻¹ with pile-up at 140 (with 800 MHz).
- Coherent electron cooling
 - Promising performance / challenging hardware / never demonstrated.
- Optical stochastic cooling
 - Marginal improvement / never demonstrated.

LIU: Exploring alternative ideas

[1/2]

H.Damerau

Linac4 PSB PSB

SPS

Basic choices + alternatives

Additional possibilities

- Vertical painting Linac4 *? %
- Long. flat or hollow bunches *25 %
- Faster recombination kickers PSB-PS (with 1.4 GeV)
- 2.0 GeV at PSB→PS transfer
- Double-batch or h=5 single-batch injection
- 3-split, BCMS, BCS or PBC (pure batch comp.)
- 8b+4e together with 3-split or BCMS

- Resonance compensation *? %
- Special injection optics *? %
- Long. flat or hollow bunches +25 %

- SPS RF upgrade: 4×3+2×4
- More RF power plants: 4×2+4×3 or 10×2
- Relaxed ε₁ with 200 MHz in LHC
- 28 GeV at PS→SPS transfer 15 %
- Split tunes optics *5 %
- Special injection optics
 *? 9

LIU: Exploring alternative ideas

[2/2]

H.Damerau

- No magic alternative to Linac4 + 2.0 GeV + SPS RF upgrade
- Large number of schemes to increase intensity and brightness from injectors
 - → Linac4+PSB+PS may push SPS to space charge limit
- Longitudinally larger bunches in SPS possible together with RF upgrade
- Limited reach of brute-force approach installing even more RF power
- Interesting alternatives can be studied in injectors after LS1
 - → PSB: Hollow bunches
 - → PS: Flat or hollow bunches, special flat-bottom optics, pure batch compression, 8b+4e schemes, higher PS-SPS transfer energy
 - → SPS: split tunes optics, higher intensity with slightly longer bunches
- Combinations of alternatives keep flexibility of injector complex to react to requests from LHC: short-, micro-, 8b+4e-batches

How to reach the required availability? [1/3] M. Lamont

A lot is already being done and anticipated to be done, across OP, R2E equipment groups, RP and HL-LHC project

Availability – e.g. cryogenics

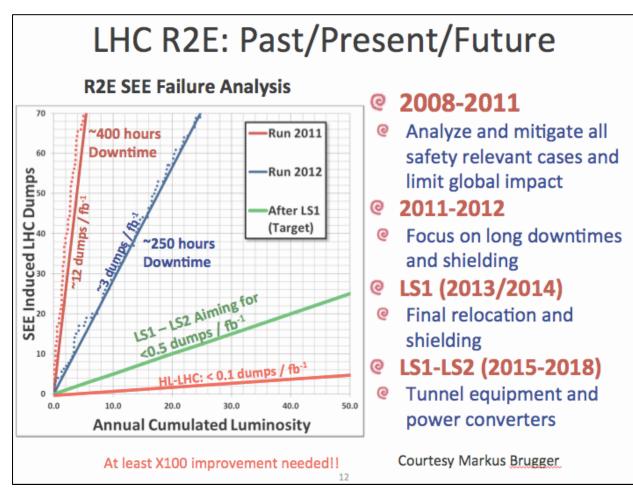
- 95% in 2012-13, including MDs and physics.
- Baseline target for HL-LHC era: 95
 % with all facilities operational + 3
 additional.

Faults

- More rigorous preventive maintenance – technical stops to allow said.
- Sustained, well-planned consolidation of injectors
- Plant redundancy e.g. back-up cooling pumps, fully reliable UPS
- Updated design for reliability, targeted rad-tol, robust, redundant system upgrades given experience and testing

Fault overhead

- Better diagnostics
- Less tunnel interventions
 - Remote resets, redundancy, remote inspection
 - Stuff on surface, 21st century technology
- Faster interventions
 - TIM radiation surveys, visual inspections etc.


Operational efficiency

- Fully and robustly establish all necessary procedures required in HL era
- Optimized BLM thresholds completely
- Compress the cycle: e.g. Combined ramp & squeeze, etc.
- More efficient and fully optimized set-up
- Upgraded system performance: e.g. 2Q triplet power supplies

How to reach the required availability? [2/3]

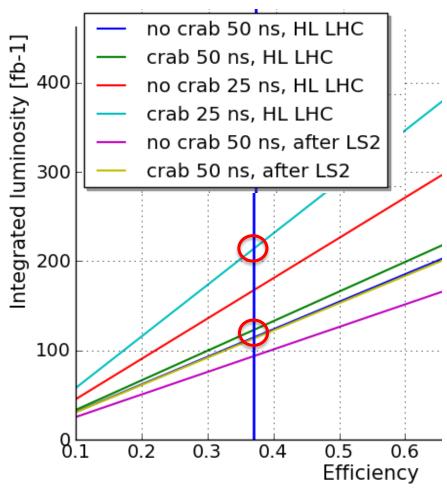
M. Lamont

- Availability issues to be monitored by the AWG in 'more formal' approach?
- Injectors must be reliable!
- R2E must be mastered.

How to reach the required availability? [3/3] M. Lamont

- Clear message: fixing fault is only part of problem: also overheads and pain of losing fill (ramp, squeeze, in physics)...
- Number 1 cause of lost fills was in fact not fault related, somewhat self-inflicted:
 e.g. Tight collimator settings, bunch intensity...
- Number 2 & 3 (QPS and power converters)
 - Huge distributed systems
 - Significant fraction to Single Event Effects (10% of total dumps)...
- Must keep addressing issues with individual systems and anticipate operating conditions in HL era. R2E effort remains critical.
- BACK OFF! Keep operational parameters 'comfortable'
- 'Run it like we mean it!' Work on the % level issues...
- Large effort will clearly be needed to keep the 2012 efficiency levels in HL-LHC era (i.e. shouldn't at this stage count on doing much better)

Workshop on "Machine Availability and Dependability for post LS1 LHC" – CERN, 28/11/2013, https://indico.cern.ch/conferenceDisplay.py?ovw=True&confld=277684


50 ns backup solution[1/2]

V. Kain

- Main threat to 25 ns seems still to be e-cloud....
- Performance essentially 50% of 25 ns reach (as 25 ns can already run at pileup limit for average fill length)

Résumé of 25 ns possible issues

- Machine protection: probably solvable
- Heating: similar for 25 ns and 50 ns
- UFOs: to be seen in LHC run 2
- Beam-beam: most certainly under control
- Possible only real threat: e-cloud

50 ns backup solution [2/2]

V. Kain

50 ns main features:

- Much easier as regards e-cloud
- Beam heating similar to 25 ns
- Instabilities could be more problematic
- Injectors can 'saturate' LHC with expected performance (again pile-up and physics efficiency are the limits)
- Less integrated luminosity: ~50 % of 25 ns performance

Other schemes to be investigated:

8b+4e (short term): 33% more bunches than 50 ns

Micro-batches (short term): improved LRBB situation

My additions

- 200 MHz main RF in LHC (long term): nominal nb of bunches
- **—** ?

No clear-cut additional upgrades identified for 50 ns

- Efficiency and crab cavities in LHC more important than 'stretching' injectors
- Cures/mitigations might be needed to stabilize the beam: unknown today.

Open questions...

3000 fb⁻¹ in ~2035 \Rightarrow Operation at 270 fb⁻¹/year immediately after LS3 (2024)! Crucial importance of <u>fill duration >6 h/pile-up >140/early availability of upgrades</u>.

Experiments

- Operating at the largest possible pile-up is essential for reaching 3000 fb⁻¹
- How crucial is pile-up density? Risk of trade-off with integrated luminosity.

- LHC

- Realistic expectation with present assumptions is ~220 fb⁻¹/year.
- Efficiency/high availability (=longer fills) is key for going further: need to organize accordingly (Is the AWG enough?).
- Importance of progress on HL-LHC options (including 200 MHz as main RF) and need for decision tree.
- More detailed planning necessary for HL-LHC during LS2 and LS3.

– Injectors

 Planning? => Decision with organization set-up asap (coordination of activities, optimization of cabling work, minimization of beam commissioning risks...).