

Accelerating Science with OpenStack

Jan van Eldik <u>Jan.van.Eldik@cern.ch</u>

(FR

What is CERN ?

- Conseil Européen pour la Recherche Nucléaire – aka European Laboratory for Particle Physics
- Founded in 1954 with an international treaty
- Between Geneva and the Jura mountains, straddling the Swiss-French border
- Our business is fundamental physics , what is the universe made of and how does it work

The Large Hadron Collider

- Data is recorded at CERN and Tier-1s and analysed in the Worldwide LHC Computing Grid
- In a normal day, the grid provides 100,000 CPU days executing over 2 million jobs

The CERN Data Centre in Numbers

- Hardware installation & retirement
 - ~7,000 hardware movements/year; ~1800 disk failures/year

	Racks	1127	Disks	79,505	Tape Drives	120
	Servers	10,070	Raw disk capacity (TiB)	124,660	Tape Cartridges	52000
	Processors	17,259	Memory modules	63,326	Tape slots	66000
	Cores	88,414	Memory capacity (TiB)	298	Data on Tape (PiB)	75
	HEPSpec06	744,277	RAID controllers	3,091	High Speed Routers	29
	Xeon L5420 263 Yeon E5410 6% 59 8% 7 79	Xeon E5- 2630L Xeon E5- 5% 2650 5% H Other 20% Xeon L5520 31% OC 19	Fujitsu 1% Hitachi 44%	WDC 49%	Ethernet Switches	874
					10 Gbps/100Gbps ports	1396/74
AIVIL 8	3%_				Switching Capacity	6 Tbps
	Xeon L5640 17% X				1 Gbps ports	27984
			OCZ		10 Gbps ports	5664
			2% 3%	IT	IT Power Consumption	2392 KW
					Total Power Consumption	3929 KW

Not too long ago....

Around 10k servers

- Dedicated compute, dedicated disk server, dedicated service nodes
- Majority Scientific Linux (RHEL5/6 clone)
- Mostly running on real hardware
- Last couple of years, we've consolidated some of the service nodes onto Microsoft HyperV
- Various other virtualisation projects around
- Many diverse applications ("clusters")
 - Managed by different teams (CERN IT + experiment groups)
 - ... using our own management toolset
 - Quattor / CDB configuration tool
 - Lemon computer monitoring

Public Procurement Purchase Model

Step	Time (Days)	Elapsed (Days)
User expresses requirement		0
Market Survey prepared	15	15
Market Survey for possible vendors	30	45
Specifications prepared	15	60
Vendor responses	30	90
Test systems evaluated	30	120
Offers adjudicated	10	130
Finance committee	30	160
Hardware delivered	90	250
Burn in and acceptance	30 days typical 380 worst case	280
Total		280+ Days

New data centre to expand capacity

- Data centre in Geneva at the limit of electrical capacity at 3.5MW
- New centre chosen in Budapest, Hungary
- Additional 2.7MW of usable power
- Hands off facility
- with 200Gbit/s network to CERN

Time to change strategy

- Rationale
 - Need to manage twice the servers as today
 - No increase in staff numbers
 - Tools becoming increasingly brittle and will not scale as-is
- Approach
 - CERN is no longer a special case for compute
 - Adopt an open source tool chain model
 - Our engineers rapidly iterate
 - Evaluate solutions in the problem domain
 - Identify functional gaps and challenge them
 - Select first choice but be prepared to change in future
 - Contribute new functionality back to the community

Prepare the move to the clouds

- Improve operational efficiency
 - Machine ordering, reception and testing
 - Hardware interventions with long running programs
 - Multiple operating system demand
- Improve resource efficiency
 - Exploit idle resources, especially waiting for disk and tape I/O
 - Highly variable load such as interactive or build machines
- Enable cloud architectures
 - Gradual migration to cloud interfaces and workflows
- Improve responsiveness
 - Self-Service with coffee break response time

Service Model Pets are given n

- Pets are given names like pussinboots.cern.ch
- They are unique, lovingly hand raised and cared for
- When they get ill, you nurse them back to health

- Cattle are given numbers like vm00042.cern.ch
- They are almost identical to other cattle
- When they get ill, you get another one

• Future application architectures should use Cattle but Pets with strong configuration management are viable and still needed

cloudscaling

Supporting the Pets with OpenStack

- Network
 - Interfacing with legacy site DNS and IP management
 - Ensuring Kerberos identity before VM start
- Puppet
 - Ease use of configuration management tools with our users
 - Exploit mcollective for orchestration/delegation
- External Block Storage
 - Looking to use Cinder with Ceph backing store
- Live migration to maximise availability
 - KVM live migration using Ceph

Current Status of OpenStack at CERN

- Grizzly-release, based on RDO packages
 - Excellent experience with the Fedora Cloud SIG and RDO teams
 - Cloud-init for contextualisation, oz for images (Linux and Windows)
- Components
 - Current focus is on Nova with KVM and Hyper-V
 - Glance (Ceph backend), Keystone (Active Directory), Horizon, Ceilometer
 - WIP: Cinder, with Ceph and NetAPP backends
 - Stackforge Puppet components to configure OpenStack
- Production service since Summer 2013
 - Today: 2 Nova cells with 950 hypervisors
 - 3700 VMs integrated with CERN infrastructure
 - Additional Nova Cells for 3000 servers being set up

CERNI	Overview	Lo		Logged i	n as: svckey	Settings
	Select a month to query it	s usage:				
/- \	November	2013	▼ Submit]		
	Active Instances: 3769 Active RAM:	38TB This Month's VCPU-Hour	s: 2243565.59	This Month's	GB-Hours: 3	23587796.31
Project Admin	Lisade Summary					
System Panel	Osage Summary					
	Project Name		VCPUs 🔺	Disk	RAM	VCPU Hour
Overview	IT Batch - Wigner		8680	249550	16TB	723386.97
Instances	IT Batch		4320	121820	8TB	235843.51
Volumes	IT Batch - shared		1480	42550	2TB	123619.01
Flavors	ATLAS Cloud Test		993	19860	1TB	79515.95
Images	IT Plus		880	25300	1TB	74139.33
Projects	IT Monitoring		283	5660	566GB	63023.68
Users	IT Dashboard		230	8860	458GB	50069.15
System Info	NA61 Data production		200	0	100GB	133642.18
_ ,	LHCb Cloud Workers		137	2950	274GB	80964.44
	PH LCGAA		136	4610	269GB	17407.40

IT Configuration Management Services

IT Agile CI

IT LFC

VCPU Hours

27766.94

28837.11

12361.95

2790

2120

1520

256GB

212GB

152GB

129

106

76

OpenStack production service since August 2013

Cell	Nodes	Cores	VMs
Geneva	655	17776	2619
Wigner	291	9312	1104
Total	946	27088	3723

All nova api requests

Through time

۰

Q Zoom Out | op5153026713249.cern.ch (2074) p05151876224664.cern.ch (2077) p05153026615220.cern.ch (1929) count per 10s | (6080 hits)

Max response time per node

😫 Zoom Out | 🔵 p05153026713249.cern.ch (2076) 🌒 p05151876224664.cern.ch (2077) 🛑 p05153026615220.cern.ch (1929) @fields.request_time

Percentage

Total requests

Percentage

Average response time per node

Jan van Eldik, CERN

When communities combine...

- OpenStack's many components and options make configuration complex out of the box
- <u>Puppet forge</u> module from PuppetLabs does our configuration
- The Foreman adds OpenStack provisioning for user kiosk to a configured machine in 15 minutes

Active Directory Integration

- CERN's Active Directory
 - Unified identity management across the site
 - 44,000 users
 - 29,000 groups
 - 200 arrivals/departures per month
- Full integration with Active Directory via LDAP
 - Uses the OpenLDAP backend with some particular configuration settings
 - Aim for minimal changes to Active Directory
 - 7 patches submitted to Folsom release
- Now in use in our production instance
 - Map project roles (admins, members) to groups
 - Documentation in the OpenStack wiki

What about Hyper-V?

- We have used Hyper-V/System Centre for our server consolidation activities
 - 3400 VMs (2000 Linux, 1400 Windows)
 - But need to scale to 100x current installation size
- Choice of hypervisors should be tactical
 - Performance
 - Compatibility/Support with integration components
 - Image migration from legacy environments
- CERN is working closely with the Hyper-V OpenStack team
 - Puppet to configure hypervisors on Windows
 - Most functions work well but further work on Console, Ceilometer, ...

Opportunistic Clouds in online experiment farms

- The CERN experiments have farms of 1000s of Linux servers close to the detectors to filter the 1PByte/s down to 6GByte/s to be recorded to tape
- When the accelerator is not running, these machines are currently idle
 - Accelerator has regular maintenance slots of several days
 - Long Shutdown due from March 2013-November 2014
- ATLAS and CMS have deployed OpenStack on their farm
 - Simulation (low I/O, high CPU)
 - Analysis (high I/O, high CPU, high network)

ATLAS Sim@P1	1,200 Servers	28,800 cores (HT)
CMS OOOO cloud	1,300 Servers	13,000 cores
CERN IT Grizzly cloud	946 Servers	27,778 cores (HT)

Upcoming challenges

- Upgrade to Havana
- Exploit new functionality
 - Deploy Cinder, with Ceph and NetAPP backends
 - Kerberos, X.509 user certificate authentication
 - OpenStack Heat
 - Replace nova-network by Neutron
 - Federated clouds
 - Keystone Domains to devolve administration
 - Bare metal for non-virtualised use cases such as high I/O servers
 - Load Balancing as a service

Ramping to 15,000 hypervisors with 100,000 VMs by end-2015

Conclusions

- OpenStack is in production at CERN
 - Work together with others on scaling improvements
- Community is key to shared success
 - Our problems are often resolved before we raise them
 - Packaging teams are producing reliable builds promptly
- CERN contributes **and** benefits
 - Thanks to everyone for their efforts and enthusiasm
 - Not just code but documentation, tests, blogs, ...

Backup Slides

References

CERN

Scientific Linux

Worldwide LHC Computing Grid

Jobs

Detailed Report on Agile Infrastructure HELiX Nebula EGI Cloud Taskforce http://public.web.cern.ch/public/ http://www.scientificlinux.org/ http://lcg.web.cern.ch/lcg/ http://rtm.hep.ph.ic.ac.uk/ http://cern.ch/jobs http://cern.ch/go/N8wp http://helix-nebula.eu/ https://wiki.egi.eu/wiki/Fedcloud-tf

CERN Accelerator Complex

Community collaboration on an international scale

Training for Newcomers

Buy the book rather than guru mentoring

— cloudstack — opennebula — openstack

