
Rivet tutorial

Andy Buckley

LHC Physics Centre at CERN,
TH seminar room, 21 Nov 2013

1/37

Contents

1 Introduction
2 First Rivet runs
3 Writing a first analysis
4 Writing a data analysis

2/37

First. . . my face ︷︸︸︷
blame Movember

3/37

http://uk.movember.com/team/1385181

Introduction

4/37

The plan

I’m going to try a part work-along / part whistlestop tour.
Please ask questions as we go.

I Some background
I Setting up, and querying available analyses
I From PYTHIA to plots
I Writing and running an analysis

We’re using Rivet 2.0.0 here. New release series, should be
stable! Much nicer than Rivet 1.x, esp. for run merging and
NLO/weight vector/etc. possibilities. . . and “future-proof”

5/37

What is Rivet?
A generator-agnostic analysis/validation system for generators.
Co-developed with HepData & HepForge, co-evolved with FastJet, . . .

i.e. it’s a tool for making physics plots from any generator that
can produce events in the HepMC format.
All the “major” generators can do this one way or another: C++ Pythia 8,
Sherpa, Herwig++ out of the box, Fortran PYTHIA 6, HERWIG+JIMMY, etc.
via AGILe.

Designed (and redesigned. . .) with usability in mind: analysis
code should be able to be concise and clear.
Rivet’s become a de facto standard for LHC analysis archiving:
many built-in data analyses.

Used for generator validation, archiving of (LHC) analysis
algorithms corresponding to measurement papers. + MC tuning,
model development, BSM studies, . . .

6/37

Design philosophy / pragmatics
Rivet operates on HepMC events. It intentionally doesn’t care
who made them.

Emphasis on not messing with the implementation details:
reconstruct resonances, avoid touching partons, etc. Most
analyses are eventually simpler and better-defined this way.

New analyses can be picked up at runtime: this is as simple and
pleasant as we can make it!
Computations are automatically cached and histograms are
automatically synchronised with reference binnings.

Lots of standard analyses are built in, including key ones for
pQCD, EW and MPI model testing. Now over 250 built-in
analyses! Reference data is also included in the package.

Please write Rivet analyses of your analysis and contribute
them. Core manpower is small: new developers welcome!!!

7/37

A little philosophy
Ok, so this is mainly for would-be MC tuners. . .

Generators are the means by which many physics ideas are
realised. But not all generator modelling is ab initio with formal
correctness and predictivity. The non-perturbative QCD parts in
particular require phenomenological modelling with (sometimes
many) free parameters.

Both kinds of model need to be tested: ensure that perturbative
physics has been properly implemented and configured (e.g.
NLO matching – it’s not obvious, or even documented. . .), and
test that pheno models are viable and params well-tuned (if
you’re not just about to do the tuning).

A dichotomy: tuning is both for

I understanding/exploring the physics of soft QCD
I data mimicking for best experimental unfolding

Know what you want! 8/37

Rivet 2.0 histogramming upgrade
I We finally released Rivet 2.0.0!
I Major effort to move from 1.x to 2.x

series: the entire histogram system was
replaced with a new interface: YODA

I YODA: http://yoda.hepforge.org
Completely new histo library.
Fast binning, with gaps and easy
irregular binning.
Stores all 2nd order weighted moments:
(
∑

w,
∑

w2,
∑

wx,
∑

wx2,
∑

wxy, . . .)
for each bin: full run combination
Natural/default inclusion of overflows
and negative weights.
Lots more features! Pleasant to use,
and more data types being added.

I All 250+ analyses had to be migrated
and numerically validated. . .

9/37

http://yoda.hepforge.org

More about Rivet 2 histogramming & merging
I YODA allows “simple” automatic run merging. With some

heuristics to distinguish homogeneous and heterogeneous run types.

I Not complete: merging (normalised) histograms and
profiles is one thing, but what about general objects, e.g.
asymmetries like (A− B)/(A + B)?

I YODA paves the way to a complete treatment:
User-accessible histograms will only be temporary copies for
the current event group (to allow NLO counter-events,
weight vectors, etc.)
Synchronised to a less transient copy every time the event
number changes in the event loop
Periodically, or on finalize(), this second copy gets used to
make final histograms: normalised, scaled, added, etc.
“Final” histograms can be written and updated through the
run: finalize() runs many times
And runs can be re-loaded and combined using the
pre-finalize copies⇒ completely general run combination.

10/37

Other Rivet developments

I Version 2.0.0 is intentionally a clone of 1.8.3 with
much-improved data handling + tweaks

I Releases 1.8.4 and 2.0.1 coming asap to add an extra ∼ 10
LHC analyses not yet in a public release

I Physics tool improvements largely waiting for version 2.1
A general system for logical combination of kinematic cuts:
no more “which double arg is the pT?”
Extra photon clustering options in W/Z finding (see next
slide)
Better jet algorithm and object support, with full FastJet
compatibility
More powerful/flexible flavour tagging, including ghost
association with HF hadrons
Wishlist: better tools for decay chain analysis (LHCb,
others?), tau and top tools

11/37

Rivet and truth definitions
I Rivet has become a useful context in which to discuss

improvements to truth definitions
⇒what is found in current event records is not necessarily
the best physics object! Standards are evolving.

I Classic examples: “Born” Z, top mass via PMAS(6,1), . . .
I Some interesting discussions about leptonic W/Z defn as

the simplest example:
no QCD connections between initial and final state: EW
effects negligible/important?⇒ analysis-by-analysis
how to cluster photons for lepton dressing (and can QED
ISR/FSR be “distinguished” via final-state cuts?)
optional exclusion of photons from hadron decays is a good
start, on the borderline of physical acceptability: appearing
in Rivet soon
how would/could/should a Born definition work for
hadronic W/Z (and Higgs)?

I Top is harder. . . but definitely a good idea to work on a
good defn. (And we need differential top event observables
– starting to arrive now.) 12/37

Setup
Rivet docs: online at http://rivet.hepforge.org – PDF manual,
HTML list of existing analyses, and Doxygen.

Instructions:
1 Log in to lxplus6: ssh 〈user〉@lxplus6.cern.ch
2 Source the setup script: source

/afs/cern.ch/sw/lcg/experimental/rivet/setup.sh

Test commands:
I rivet --help

I pythia --help

You should also be able to use
http://rivet.hepforge.org/hg/bootstrap/rawfile/tip/rivet-2-bootstrap (and install
Pythia8+Sacrifice separately)

If you want to run on your own laptop, please use the Rivet wiki
installation instructions.

13/37

http://rivet.hepforge.org
http://rivet.hepforge.org/hg/bootstrap/rawfile/tip/rivet-2-bootstrap
http://home.thep.lu.se/~torbjorn/Pythia.html
https://agile.hepforge.org/trac/wiki/Sacrifice

First Rivet runs

14/37

Viewing available analyses

Rivet knows all sorts of details about its analyses:

I List available analyses:
rivet --list-analyses

I List ATLAS analyses:
rivet --list-analyses ATLAS_

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

The PDF and HTML documentation is also built from this info,
so is always synchronised.

The analysis metadata is provided via the analysis API and usually read from
an .info file which accompanies the analysis.

15/37

Running a simple analysis (standalone)
To avoid huge files, we get the events from generator to Rivet by
writing to a filesystem pipe: mkfifo hepmc.fifo

You can also just use a file but it’ll be big.
NB. A FIFO/pipe has to live in a non-AFS directory. On lxplus: mkfifo
/tmp/$USER/hepmc.fifo

I’m going to use the Sacrifice frontend to run Pythia 8 for
demonstration – use the same or run any other generator that
you like with HepMC output going to the FIFO:
pythia -n 2000 -c HardQCD:all=on -o hepmc.fifo &

or agile-runmc Pythia6:426 --beams=LHC:8000 -n 2000 -o hepmc.fifo &

Now attach Rivet to the other end of the pipe:
rivet -a MC_GENERIC -a MC_JETS hepmc.fifo

Hopefully that worked. You can use multiple analyses at once,
change the output file, etc.: see rivet --help

16/37

http://agile.hepforge.org/svn/contrib/Sacrifice/

Feeding LHEF events into Rivet
If your code outputs LHEF events rather than HepMC, you can’t
use Rivet directly. Anyway, you’re taking a risk that it won’t
work since Rivet is final-state focused. . . but you can also get
hold of the raw event if you want and just use the
histogramming and event loop.

At Les Houches 2011 I made a mini filter program which will
convert LHEF files or streams to HepMC ones:
http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Use it like this:
./lhef2hepmc lhef.fifo hepmc.fifo

or
./lhef2hepmc lhef.fifo - | rivet

Maybe some help will be needed with building this program –
it’s not an official part of Rivet so you have to download and
build it by hand. Let us know if you need a hand.

17/37

http://rivet.hepforge.org/hg/contrib/file/tip/lhef2hepmc/

Plotting
It’s still not ROOT. . . we have now replaced the AIDA
histograms with a new system called YODA
(http://yoda.hepforge.org)

We agonised over this, but in the end ROOT’s histos have too
many restrictions, e.g. bin widths not accounted for, bin gaps not
allowed, weights not handled without explicit enabling, etc.
YODA is designed from the ground up to be good at what we
need to do.

Plotting .yoda file is easy:
rivet-mkhtml Rivet.yoda

or, if you want complete control:
rivet-cmphistos Rivet.yoda

make-plots *.dat

Then view with a web browser/file browser/evince/gv/xpdf. . .
A --help option is available for all Rivet scripts.

18/37

http://yoda.hepforge.org

Running a data analysis
We’re going to use the ATLAS 7 TeV high-pT jet shapes analysis:
rivet --show-analysis ATLAS_2012_I1119557

Note that tab completion should work on rivet options and
analysis names.

Now to run it:
pythia -n 20000 -c HardQCD:all=on -c

PhaseSpace:pTHatMin=280 -o hepmc.fifo &

rivet -a ATLAS_2012_I1119557 hepmc.fifo

See the Py8 manual: http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html

And plot, much as before:
rivet-mkhtml Rivet.yoda:Pythia8

or
rivet-cmphistos Rivet.yoda:Pythia8

make-plots --pdfpng ATLAS*.dat

19/37

http://home.thep.lu.se/~torbjorn/pythia81html/Welcome.html

Writing a first analysis

20/37

Writing an analysis
Writing an analysis is of course more involved than just running
rivet! However, the C++ interface is intended to be friendly:
most analyses are quite short and simple because the bulk of
computation is in the library.

An example is usually the best instruction: take a look at the
MC_GENERIC analysis via
http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc)

Things to note:

I Analyses are classes and inherit from Rivet::Analysis

I Usual init/execute/finalize-type event loop structure
(certainly familiar from experimental frameworks)

I Weird projection things in init and analyze

I Mostly normal-looking everything else

21/37

http://rivet.hepforge.org/hg/rivet/file/tip/src/Analyses/MC_GENERIC.cc

Projections – registration

Major idea: projections. They are just observable calculators:
given an Event object, they project out physical observables.

They also automatically cache themselves, to avoid
recomputation. This leads to slightly unfamiliar calling code.

They are registered with a name in the init method:

void init() {
...
const SomeProjection sp(foo, bar);
addProjection(sp, "MySP");
...

}

22/37

Projections – applying
Projections were registered with a name. . . they are then applied
to the current event, also by name:

void analyze(const Event& evt) {
...
const SomeProjectionBase& mysp =
applyProjection<SomeProjectionBase>(evt, "MySP");

mysp.foo()
...

}

We prefer to get a handle to the applied projection as a const reference
to avoid unnecessary copying.

It can then be queried about the things it has computed.
Projections have different abilities and interfaces: check the
Doxygen on the Rivet website, e.g.
http://projects.hepforge.org/rivet/code/dev/hierarchy.html

23/37

http://projects.hepforge.org/rivet/code/dev/hierarchy.html

Final state projections
Rivet is mildly obsessive about only calculating things from final
state objects. Accordingly, a very important set of projections is
those used to extract final state particles: these all inherit from
FinalState.

I The FinalState projection finds all final state particles in a
given η range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have
the predictable effect!

I IdentifiedFinalState can be used to find particular
particle species.

I VetoedFinalState finds particles other than specified.
I VisibleFinalState excludes invisible particles like

neutrinos, LSP, etc.

Most FSPs can take another FSP as a constructor argument and
augment it. In the near future FSPs should be able to take arbitrary
combinations of kinematic cuts as a single argument. 24/37

Using FSPs to get final state particles

void analyze(const Event& evt) {
...
const FinalState& cfs =
applyProjection<FinalState>(evt, "ChFS");

MSG_INFO("Total charged mult. = " << cfs.size());
foreach (const Particle& p, cfs.particles()) {
const double eta = p.momentum().eta();
MSG_DEBUG("Particle eta = " << eta);

}
...

}

Note the nice foreach macro from boost.org. We like the “make simple things
simple” philosophy. Please use foreach when appropriate in any code that
you contribute to Rivet. In future we may permit (and prefer) the C++ 11
range-for loop.

25/37

Physics vectors

Rivet uses its own physics vectors rather than CLHEP. They are
a little nicer to use (we think!), but basically familiar. As usual,
check Doxygen: http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum() method which returns
a FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(),
E(), px() etc., mass(). Hopefully intuitive!

26/37

http://projects.hepforge.org/rivet/code/dev/

Histogramming
YODA has Histo1D and Profile1D histograms (and more), which
behave as you would expect. See
http://yoda.hepforge.org/doxy/hierarchy.html

Histos are booked via helper methods on the Analysis base
class, which deal with path issues and some other abstractions∗:
e.g. bookHisto1D("thisname", 50, 0, 100)

Histo binnings can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for
use in the analyze method. There are scale(), normalize() and
integrate() methods for use in finalize().

The fill weight is important! For kinematic enhancements,
systematics, counter-events, etc.Use evt.weight().

∗ The abstractions are key to handling systematics weight vectors, correlated
counter-events, completely general run merging, etc. 27/37

http://yoda.hepforge.org/doxy/hierarchy.html

A first analysis

Let’s start with a simple “particle analysis”, just plotting some
simple particle properties like η, pT, φ, etc. Then we’ll try jets or
W/Z.

To get an analysis template, which you can fill in with an FS
projection and a particle loop, run e.g. rivet-mkanalysis
MY_TEST_ANALYSIS – this will make the required files.

Once you’ve filled it in, you can either compile directly with g++,
using the rivet-config script as a compile flag helper, or run
rivet-buildplugin MY_TEST_ANALYSIS.cc

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet

as before. . . or add the --pwd option to the rivet command line.

28/37

Jets (1)

There are many more projections, but one more important set
which we’d like to dwell on is those to construct jets. JetAlg is
the main projection interface for doing this, but almost all jets
are actually constructed with FastJet, via the explicit FastJets
projection.

The FastJets constructor defines the input particles (via a
FinalState), as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6);
fj.useInvisibles();
addProjection(fj, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

29/37

Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pT order:

const Jets jets =
applyProjection<JetAlg>(evt, "Jets").jetsByPt(20*GeV);

foreach (const Jet& j, jets) {
foreach (const Particle& p, j.particles()) {
const double dr =
deltaR(j.momentum(), p.momentum());

}
}

Check out the Rivet/Math/MathUtils.hh header for more handy
functions like deltaR.

30/37

Jets (3)

For substructure analysis Rivet doesn’t provide extra tools: best
just to use FastJet directly

const PseudoJets psjets = fj.pseudoJets();
const ClusterSequence* cseq = fj.clusterSeq();

Selector sel_3hardest = SelectorNHardest(3);
Filter filter(0.3, sel_3hardest);
foreach (const PseudoJet& pjet, psjets) {
PseudoJet fjet = filter(pjet);
...

}

This is an historical design! Rivet 2.1 will include a major
overhaul of jets, etc. for much better Fastjet/jet structure
integration.

31/37

A jetty analysis

I’ll walk through making and
running a very simple jet +
substructure analysis – but no
physics input or complexity
here!

The ideal result will be found
on AFS at
~abuckley/public/rivet-tutorial/

MC (Rivet)

10−4

10−3

10−2

10−1
Jet mass

1
/

σ
d
m
/
d

σ

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

Jet mass [GeV]

R
a
ti
o

32/37

Writing a data analysis

33/37

Starting a data analysis
We’ll use the ATLAS 2010 W+jets analysis as an example. Feel
free to implement something else: we’ll try to troubleshoot.

The SPIRES key for this ATLAS analysis is 8919674 (try “key
8919674” in the SPIRES search box) and it was published in 2010,
so in the standard Rivet naming convention it is called
ATLAS_2010_S8919674.
This is a bit outdated: sorry! We prefer Ixxxxxx now, using the Inspire key.

There is reference data for this analysis in HepData: running
rivet --show-analysis ATLAS_2010_S8919674 supplies this
URL: http://hepdata.cedar.ac.uk/view/irn8919674

rivet-mkanalysis ATLAS_2010_S8919674 will download this ref
data. NB. the jet multiplicity plots are not output correctly: HepData needs
some improvements! Check the .info and .yoda files: use yoda2flat

ATLAS_2010_S8919674.yoda | less

The histogram names in this data file can be used for autobooking.34/37

http://hepdata.cedar.ac.uk/view/irn8919674

Histogram autobooking
The final framework feature to introduce is histogram
autobooking. This is a means for getting your Rivet histograms
binned with the same bin edges as used in the experimental data
that you’ll be comparing to.

To use autobooking, just call the booking helper function with
only the histogram name (check that this matches the name in
the reference .yoda file), e.g.
_hist1 = bookHisto1D("d01-x01-y01")

The “d”, “x” and “y” terms are the indices of the HepData dataset, x-axis, and
y-axis for this histogram in this paper.

A neater form of the helper function is available and should be
used for histogram names in this format:
_hist1 = bookHisto1D(1, 1, 1)

That’s it! If you need to get the binnings without booking a
persistent histogram use refData(name) or refData(d,x,y).
NB. Extra bool argument for using ref data x vals for Scatter2Ds

35/37

UnstableFinalState
The UnstableFinalState projection fetches
decayed-but-physical particles (mostly hadrons) from the event
record. The HepMC standard declares how these are to be
indicated, so the results are reliable and physically safe:

const UnstableFinalState ufs(2.5, 6.0);
addProjection(ufs, "UFS");
...
const FinalState& ufs =
applyProjection<FinalState>(evt, "UFS");

foreach (const Particle& p, j.particles()) {
const int pid = p.pdgId();
if (PID::hasBottom(pid)) num_b += 1;
...

}

HepPDT-type functions are defined in the PID namespace in the
Rivet/Tools/ParticleIdUtils.hh.

The new PrimaryHadrons and HeavyHadrons projections are
perhaps better: no duplication. Useful for tagging, etc. 36/37

THE END

37/37

	Introduction
	First Rivet runs
	Writing a first analysis
	Writing a data analysis

