

Particle Production and Binary Scaling in p-Pb Collisions with ALICE

Andreas Morsch

on behalf of the ALICE Collaboration

CERN LHC Seminar November 12, 2013

Outline

- Introduction
- Nuclear modification factors in minimum bias p-Pb collisions measured by ALICE
 - Need for centrality dependent measurements
- Centrality determination with ALICE
- Possible biases on binary scaling
 - Study of correlation of bulk particle production and semi-hard scattering in p-Pb using di-hadron correlations
 - Bias inclusive charged hadron production
- Conclusions

Study of p-A Collisions ...

- Field developed from
 - crucial control-experiment to study cold nuclear effects and to establish a baseline for Pb-Pb
 - to an area where on could see some interesting effects
 - ex. suppression of away-side correlations (RHIC)
 - saturation ?
 - Groundbreaking discoveries ... but also new challenges

Nuclear modification factor

$$R_{\rm pA}^{\rm X}(p_{\rm T}) = \frac{{\rm d}N_{\rm X}^{\rm pA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm X}^{\rm pp}/{\rm d}p_{\rm T}}$$

"binary scaling" in Glauber model $< N_{coll} >$ number of binary collisions ("nucleons hit in the nucleus")

$$\frac{\mathrm{d}\,\sigma^{^{pA\to X}}}{\mathrm{d}\,p_{\mathrm{T}}} \propto f_{i}^{\,p}(x_{1,}Q^{2}) \circ f_{j}^{\,A}(x_{2,}Q^{2}) \circ \sigma^{ij\to k}(x_{1,}x_{2,}p_{\mathrm{T}}/z,Q^{2}) \circ D_{k\to X}(z,Q^{2}) \circ FS \, e\!f\!f\!ects$$

- In absence of strong final state effects, R_{pA} provides information about nuclear modifications of *the parton density function*

Write $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$

Two regions important at the LHC

- shadowing
- anti-shadowing

EPS09

Where are we?

Multiple-(Hard) Collisions

Figure 1: The inclusive hard cross section for three different proton PDFs, compared to various extrapolations of the non-perturbative fits to the total *pp* cross section at 14 TeV centre-of-mass energy.

M. Bahr, J.M. Butterworth and M.H. Seymour, The underlying event and the total cross section from Tevatron to the LHC , JHEP 01 (2009) 065 [arXiv:0806.2949] [INSPIRE].

- In pp hard cross-section exceeds the total cross-section, strongly indicating that there are multiple semi-hard (perturbative collisions per event)
- N_{coll} binary collisions implies >> N_{coll}
 semi-hard-scatterings in addition to the hard process studied
- Correlations between hard process and bulk of particle production ?
 - Possible consequences for centrality determination (to be discussed later ...)

 $f_i^p(x_{1,Q}^2; x_{1,1}, Q_1^2, x_{1,2}Q_2^2,)$

Results for nuclear modification factors in minimum bias p-Pb collisions ($\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$)

Inclusive Charged Hadrons

ALICE, Phys.Rev.Lett. 110 (2013) 082302 arXiv:1210.4520

Suppression at high p_{τ} seen in Pb-Pb is final state effect.

Jets

Suppression seen in central Pb-Pb is final state effect.

Open Heavy Flavor

Strong suppression seen in Pb-Pb is final state effect.

Quarkonia

- Shadowing seen in the forward direction
- Direct consequences for suppression seen in Pb-Pb
 - Expected to enhance J/ψ recombination effect at low p_{τ}
- Important to check N_{coll} dependence !

Ψ' same Q^2 but stronger suppression

- 20% difference between forward and backward suppression
- Qualitatively consistent with break-up by co-moving medium
 - But also large effect in the forward direction.
- In trend with multiplicity dependence observed p(d)-A and A-A at lower \sqrt{s}
 - Important to check N_{coll} dependence.

Multiplicity dependent studies: Double ridge

14

Multiplicity dependent studies

or Color reconnections = coherent effects between strings = some form of collectivity

Andreas Morsch, CERN LHC Seminar 12/11/2013

How to obtain multiplicity dependent R_{nA} ?

Nuclear Modification Factor for p-Pb

Minimum Bias:

ALI-PUB-44351

How can we make this measurement centrality/multiplicity dependent?

$$R_{pA}^{\text{cent}}(p_{\text{T}}) = \frac{\mathrm{d} N^{\text{pA}}/\mathrm{d} p_{\text{T}}}{\langle T_{pA}^{\text{cent}} \rangle \mathrm{d} \sigma^{\text{pp}}/\mathrm{d} p_{\text{T}}} = \frac{\mathrm{d} N^{\text{pA}}/\mathrm{d} p_{\text{T}}}{\langle N_{\text{coll}}^{\text{cent}} \rangle \mathrm{d} N^{\text{pp}}/\mathrm{d} p_{\text{T}}}$$

<N_{coll}> for centrality classes

- Centrality event classes defined using centrality estimators
 - Particle multiplicity or summed energy in given pseudo-rapidity region
 - Centrality defined as percentiles of the multiplicity distribution
- For each centrality class, two independent questions
 - Q1 How many collisions: N_{part} , N_{coll} ?
 - These are relative small numbers in p-Pb
 - Fluctuations are important.
 - Q2 How unbiased are the nucleon-nucleon collisions ?

What distinguishes cent-1 from cent-2 for the same N_{coll} ? Is it relevant for other physics observables ?

Let's start with Q1 ...

Percentiles example

Detectors for Centrality Estimation

Quartz-Fiber "Spaghetti" Zero Degree Calorimeters

z = ·± 112.5 m

Centrality Estimators discussed here:

- CL1: Clusters in 2nd Pixel Layer
- V0A: V0A Multiplicity
- V0M: V0A+V0C Multiplicity
- ZNA: ZNA Energy

Estimators sensitive to ...

Excursion: N_{coll} from Glauber Monte Carlo

- The two colliding nuclei are represented by randomly distributing the A nucleons of nucleus A and the B nucleons from nucleus B in three spatial dimensions according to the respective density functions (Wood-Saxon)
 - a minimum distance between nucleons can be imposed
- A random impact parameter is drawn from $d\sigma/db = 2\pi b$
- A nucleus-nucleus collision is treated as a sequence of independent binary nucleon-nucleon collisions
 - nucleons travel in straight lines
 - collision takes place if the distance d

Andreas Morsch, CERN LHC Seminar 12/11/2013

- Smear p-N impact parameter according with exp. distribution to take into account matter distribution inside p (ALICE)
- p-Eikonal (HIJING, Pythia, ALICE)
 - interaction probability depends on p-N overlap
- Glauber-Gribov (ATLAS, CONF-2013-96)
 - fluctuating p-N cross-section (fluctuating proton configurations)

Unclear how to relate N_{coll} to fluctuations for the hard cross-section at high Q^2 and low x

Glauber Fit with NBD in p-Pb

- Same procedure as for Pb-Pb (ALICE, arXiv:1301.4361)
- Centrality classes: Multiplicity distribution sliced into percentiles of cross-section
 - Starting with the highest multiplicity = most central collisions
- Obtain $P(N_{part})$ from Glauber Monte Carlo
 - N_{part} is equal to number of ancestors

$$N_{\rm coll} = N_{\rm part} - 1$$

- For each ancestor obtain multiplicity form Negative Binomial Distribution (NBD) and iterated to fit NBD parameters
- Obtain $\langle N_{coll} \rangle$ from MC for each centrality class

Negative Binomial Distribution :

$$f(n;k,p) = {\binom{n+k-1}{n}} (1-p)^k p^n$$

Mean: $\mu = \frac{pk}{1-p}$
Variance: $\sigma^2 = \mu + \frac{\mu^2}{k}$

Binary Scaling in A-A

Comparison to binary scaled pp pQCD prediction.

 $N_{\rm coll}$ fluctuations within the same class are large !

Glauber Fit Results

- N_{coll} similar for different estimators

- Similar to MC closure and Glauber MC systematic error.
- Systematic error estimated by varying Glauber MC parameters.
- MC closure test performed with HIJING.

Glauber Fit for Slow Nucleons

- Same procedure, however, particle production coupled to to model for slow nucleon emission.
 - Properties of emitted nucleons expected to only weakly depend on energy.
 - Phenomenological model based on data at low energies

- Able to reproduce main features of ZNA spectrum

27

F. Sikler arXiv: 0304.065

Biases on p-N Collisions ?

More Information from Glauber MC

- Multiplicity / N_{part} strongly biased for peripheral and central collisions.
- (This is a qualitatively a general result. All systems with fluctuations and dynamical limits will show this.)

- Mean p-nucleon impact parameter increases in peripheral collisions.
- Also softer than average collisions ?
 - Is there any dynamic interpretation of these fluctuations ?

Biases and Binary Scaling

 Models based on multi-parton interaction (MPI) include intrinsically a fluctuating number of particles sources (hard scatterings). For example HIJING (X.N. Wang and M. Gyulassy, nucl-th/9502021)

Mean number of scatterings per event obtained from impact parameter $b_{_{\rm NN}}$ dependent proton-nucleon overlap function $T_{_{\rm N}}(b_{_{\rm NN}})$

$$\langle n_{\rm hard} \rangle (b_{\rm NN}) = \sigma_{\rm hard} T_{\rm N} (b_{\rm NN})$$

Poissonian probability for multiple hard interaction

$$p_i(b_{\rm NN}) = \frac{\langle n_{\rm hard} \rangle^i}{i!} \exp(-\langle n_{\rm hard} \rangle)$$

Link between multiplicity fluctuations (bias) and number of hard scatterings !

Qualitatively Two New Elements

$$R_{\rm pA}(p_{\rm T}) = \frac{{\rm d} N^{\rm pA}/{\rm d} p_{\rm T}}{\overline{N_{\rm coll}^{\rm P}} {\rm d} N^{\rm pp}/{\rm d} p_{\rm T}}$$

• For a given centrality percentile hard processes scale with

$$N_{\rm coll}^{\rm Glauber} \langle n_{\rm hard} \rangle_{\rm cent} / \langle n_{\rm hard} \rangle_{\rm pp}$$

- For a given p-Pb impact parameter b, <n_{hard} > depends on the average pN impact parameter <b_{NN} >
 - Mainly important for peripheral collisions
 - Here multiplicity cut acts also as a veto for hard processes.

Excursion:

What can data tell about multiple low- p_{τ} scatterings in p-Pb

- Important to get more insight into bulk particle production and hard scatterings in a kinematic region where they overlap (low- p_{τ})
- Triggered di-hadron angular ($\Delta \phi$) correlations are an ideal tool to study mini-jets.
 - separates overlapping particle sources on a statistical basis
 - sensitivity to fragmentation properties and number of particle sources

Chose p_{T} cuts large enough to be insensitive to string breaking (> $\Lambda_{_{QCD}}$) and low enough to be able to get information about particle production where multiple parton interactions are important.

$$p_{_{\rm T}} > 0.7 \; {\rm GeV}$$

Near-side Yield

central multiplicity for 20 V0A percentiles

No bias on near-side yield except for low multiplicities. Bias to softer than average p-N collisions.

Away-side Yield

ALICE, JHEP 09 (2013) 049

Same behavior for the back-to-back correlations (away-side)

Quite surprising result, since at the same time v_2 and $\langle p_T \rangle$ strongly increase.

One degree of complexity less !

Number of uncorrelated seeds

To reduce sensitivity to fragmentation properties we define:

$$< N_{\rm uncorrelated seeds} > = \frac{< N_{\rm trigger} >}{< 1 + N_{\rm assoc, near+away} >}$$

(In pp, more important for shape in pp)

Corroborates picture of linear increase of number of parton scatterings with V0A estimator. No additional fragmentation bias at high multiplicity.

- Approximate scaling within (10%) from $N_{\text{coll, Glauber}} = 3-13$

- Important deviations for low and high $N_{coll} =>$ less / more semi-hard scatterings per p-N collision ?

Di-hadron correlation analysis as a function of multiplicity provides framework in which models for correlation between hard processes and bulk particle production can be tested.

Bias from Different Estimators

- Different centrality estimators expected to show different deviations from N_{coll} scaling
 - CL1 (Clusters Pixel Layer 2): strong bias due to full overlap with tracking region.
 - Additional bias in peripheral event from "Jet veto effect"
 - Jets contribute to the multiplicity and shift events to higher centralities (p_{τ} dependent)
 - VOM (VOA+VOC Multiplicity): reduced bias since outside tracking region
 - VOA Multiplicity: reduced bias because of important contribution from Pb fragmentation region.
 - ZNA: small bias slow nucleon production independent of hard processes

At high p_{τ}

$$Q_{pA}(p_T; cent) = \frac{\mathrm{d} N^{pA}/\mathrm{d} p_T}{N_{coll}^{Glauber} \mathrm{d} N^{pp}/\mathrm{d} p_T} = \frac{\mathrm{d} N^{pA}/\mathrm{d} p_T}{T_{pA}^{Glauber} \mathrm{d} \sigma^{pp}/\mathrm{d} p_T} \neq 1$$

In general N_{coll} for a given centrality class can not be used to scale the pp cross-section !

Andreas Morsch, CERN LHC Seminar 12/11/2013

Mean Q_{pPb} at High p_{T}

"S-shape" dependence as seen from multiplicity bias (Glauber + NBD fit), Shape flattens $CL1 \rightarrow V0M \rightarrow V0A$

Comparison with Glauber+Pythia

- Bias at high p_{τ} described by incoherent superposition of pp collisions.
- For most peripheral p-Pb, good agreement also in low- and intermediate p_{τ} region.
- Strong deviations for all other centrality bins !

Conclusions

- In p-Pb, centrality estimators based on multiplicity measured in $|\eta| < 5$ induce biases on the average multiplicity per p-nucleon collision.
 - due to the relatively large fluctuations of the p-N multiplicity.
 - dynamical models of these fluctuations can relate this bias to a bias on the binary scaling of hard processes.
 - Such a relation is provided by multiple parton interactions as used in Monte Carlo generators.
 - The biases decreases by increasing the η-gap between centrality estimator and momentum measurement.
- Measurements of multiplicity dependent di-hadron correlations provide a framework to test models for correlation between hard probes and bulk particle productions in kinematic regions where they overlap
 - Our measurements at low $p_{\rm T}$ show that there is no additional fragmentation bias at high $N_{\rm coll}$ and we observe biases on binary scaling similar to the one at high $p_{\rm T}$.

Some more details

 Interaction probability calculated from nucleon-nucleon (pp) overlap function.

$$T_{N}(b) = 2 \frac{\chi_{0}(b, s)}{\sigma_{soft}}$$
$$\chi_{0}(\xi) = \frac{\mu_{0}^{2}}{96} (\mu_{0}\xi)^{3} K_{3}(\mu_{0}\xi), \xi = b/b_{0}(s)$$

Inelastic cross-section (1 – probability for no interaction)

$$d\sigma_{inelastic} = \pi db^{2} [1 - \exp(-2\chi(b, s))] = \pi db^{2} [1 - \exp(-(\sigma_{soft} + \sigma_{hard})T_{N}(b, s))]$$

• Centrality integrated

$$\langle N_{col} \rangle = A \frac{\sigma_{pp}}{\sigma_{pA}}; \langle n_{hard} \rangle = \frac{\sigma_{hard}}{\sigma_{soft}} \langle N_{col} \rangle$$