

Physique

et

Imagerie Médicale

Paul Lecoq CERN, Genève

CERN – French Physics Teachers - 22 juin 2014

P. Lecoq CERN

Röntgen obtient le 1^{er} prix Nobel de physique en 1901

CERN – French Physics Teachers - 22 juin 2014

Premières applications dans la thérapie du cancer

STOCKHOLM

Basic concept Local control of the tumour

1902

1912

1908 : first attempts of skin cancer radiation therapy in France ("*Curietherapy*")

CERN – French Physics Teachers - 22 juin 2014

Summary of accelerators running in the world

CATEGORY OF ACCELERATORS	NUMBER IN USE (*)			
High Energy acc. (E >1GeV)	~120			
Synchrotron radiation sources	>100			
Medical radioisotope production	<u>~200</u>			
Radiotherapy accelerators	> 7500 > 9000			
Research acc. included biomedical research	<u>~1000</u>			
Acc. for industrial processing and research	~1500			
Ion implanters, surface modification	>7000			
TOTAL	> 17500			

(*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004

CERN – French Physics Teachers - 22 juin 2014

5

Petite histoire résumée de l'imagerie in-vivo

Imaging Modalities

L'imagerie pour une meilleure prise en charge du patient

Recueillir une information détaillée de chaque individu pour:

- Diagnostiquer la maladie à un stade précoce
- Déterminer les paramètres de la maladie, comme son agressivité, son potentiel métastasique
- Optimiser l'action thérapeutique en fonction du génotype du patient
- Evaluer instantanément l'efficacité du traitement

Implique une nouvelle génération de systèmes d'imagerie

CERN – French Physics Teachers - 22 juin 2014

8

LHC - Installation des aimants supraconducteurs (27km)

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

L'aimant toroïdal d'Atlas

Scanner TEP/CT

CERN – French Physics Teachers - 22 juin 2014

P. Lecoq CERN

CRYSTAL

CLEAR

Imagerie anatomo-fonctionnelle non invasive

Patiente traitée pour un cancer du colon révélant à l'examen un cancer du sein additionnel

CERN – French Physics Teachers - 22 juin 2014

CAT Scanner Le principe de la tomographie

Prix Nobel de Physiologie et Médecine 1979

Allan MacLeod **Cormack Physicien Nucléaire** Cape Town Harvard University Tufts University

Sir Godfrey N. **Hounsfield** Ingénieur électricien anglais EMI Research

CERN – French Physics Teachers - 22 juin 2014

IRM, imagerie par résonance magnétique

Felix Bloch Physicien Stanford

Prix Nobel de Physique 1952

Edward M. Purcell Physicien Harvard

Prix Nobel de Physiologie et Médecine 2003

Sir Peter **Mansfield** Physicien Nottingham

Paul C. **Lauterbur** Chimiste Uni. Illinois

P. Lecoq CERN

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

Combiner les informations anatomique et fonctionnelle

morphology metabolism

David Townsend CERN: 1970-78 Université de Genève UPSM Pittsburgh and Ronald Nutt (CTS – CTI)

P. Lecoq CERN

CERN – French Physics Teachers - 22 juin 2014

erimed

vw.cern.ch/cerim

Des défis similaires pour l'imagerie TEP et les detecteurs de physique

 Cristaux Transfert technologique Densité élevée (> 6 g/cm³) Emission rapide (< 100 ns), spectre visible Emission lumineuse modérée à élevée Excellente résistance aux radiations 	 Cristaux Densité élevée (> 7 g/cm³) Emissionrapide (< 100 ns), spectre visible Emission lumineuse élevée Résistance modérée aux radiations Photodetecteurs
 2. Photodetecteurs Compact Grande efficacité quantique et gain élevé Grande stabilité 3. Electronique de lecture Mise en forme rapide du signal, faible bruit Fortement intégrée 4. Architecture d'acquisition DAQ Intégrée et parallèle, temps mort réduit 5. Logiciels Transfert technologique Simulation précise par Monte Carlo 6. Integration Sytèmes compacts avec un très grand nombre de canaux (> 10'000) Transfert technologique 	 Compact Grande efficacité quantique et gain élevé Grande stabilité Electronique de lecture Mise en forme rapide du signal, faible bruit Fortement intégrée Architecture d'acquisition DAQ Intégrée et parallèle, temps mort réduit Logiciels Simulation précise par Monte Carlo Integration Sytèmes compacts avec un très grand nombre de canaux(> 10'000)

CERN – French Physics Teachers - 22 juin 2014

The PET World Picture

Need to Image 0.000000511 TeV Photons

*511 keV

Signal Levels Are Very Low

CERN – French Physics Teachers - 22 juin 2014

24

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

26

Limite liée au bruit de fond

CERN – French Physics Teachers - 22 juin 2014

Cas réel: combinaison des 2 effets

erimed

CERN – French Physics Teachers - 22 juin 2014

28

L'imagerie médicale du futur

- Examens plus rapides
- Correction de mouvements
 - Respiration
 - Battements cardiaques
 - Bolus digestif
- Etudes dynamiques
- Quantification
- Multimodalité
- Réduire la dose aux patients

AMELIORER

- Résolution spatiale
- Résolution temporelle
- Sensibilité
- Rapport Signal/Bruit

La quête pour une meilleure résolution spatiale

Siemens Somatom CT 64 slices CERN – French Physics Teachers - 22 juin 2014

P. Lecoq CERN

Trends in medical imaging

• Small animal imaging

- Large variety of transgenic animals (mainly rodents) to model different disease
- Repetitive observations of biological processes on the same animal
- Assess effectiveness of new diagnostics, prevention and therapeutic strategies
- Develop new drugs

La quête pour une meilleure

(x 300) 0)

x réclame des gration et à

P. Lecoq CERN

CERN – French Physics Teachers - 22 juin 2014

CMS PbWO₄ production

Crystal Clear LuAP production

CERN – French Physics Teachers - 22 juin 2014

Scintillators for PET

	1962	1977	<u>1995</u>	1999	<u>2001</u>	2003	<u>200</u> 7
	NaI	BGO	GSO:C	e LSO:C	e LuAP:Ce	LaBr ₃ :Ce	LuAG:Ce
Density (g/cm ³)	3.67	7.13	6.71	7.40	8.34	5.29	6.73
Atomic number	51	75	59	66	65	47	63
Photofraction	0.17	0.35	0.25	0.32	0.30	0.13	0.30
Decay time (ns)	230	300	30-60	35-45	17	18	60
Light output (hv/MeV)	43000	8200	12500	27000	11400	70000	>25000
Peak emission (nm) Refraction index	1.85	480 2 15	430	420	365	356	535
			1.85	1.82	1.97	1.88	1.84

CERN – French Physics Teachers - 22 juin 2014

2- Photodetecteurs

4- Simulation

Higgs event at LHC (CMS) with Geant4

ClearPET with GATE: Geant4 Application for Tomographic Emission

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

Etudes de plus en plus spécifiques sur modèles animaux

• L'imagerie petit animal se fait généralement sous anesthésie

• L'anesthesie modifie les fonctions cervicales et biaise les études neurophysiologiques

• RATCAP, developé à BNL est un TEP miniaturisé et portable pour animal éveillé

• 12 blocs de 4x8 cristaux de LSO 2x2x5mm³ lus par des matrices de 4x8 APD et 0.18µm CMOS ASIC

•C. Woody et al. Several papers in conference records of NSS/MIC2004, Rome

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

ClearPEM-Sonic a collaborative project between physicians and physicists

TearPEM Sor

Installed in Marseilles North hospital since December 2010 Reinstalled in San girardo hospital, Milano, in October 2013

ClearPEM: Metabolic information

Aixplorer: Morphologic and structural information

erimed

Objective: Detect 3mm tumors and define their cancerous statusCERN – French Physics Teachers - 22 juin 2014P. Lecoq CERN

Des technologies d'avant-garde ClearPEM

New technologies Ultrasound

- Focus ultrasound beam in tissue
- Propagate focal point a t supersonic speed in breast
- Measure the deformation of the shock wave by a tumor

PET/MRI complementarity

4 lesions identified on MR image

Only one suspicious lesion identified on PET image

Subsequent biopsy and histology of all four lesions confirmed that only the lesion seen on PET image was cancerous

Courtesy: Dr. José Ferrer, ERESA, Hospital General Universitario de Valencia, Spain

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

Novel multimodal endoscopic probes for simultaneous PET/ultrasound imaging for image-guided interventions

FP7 project, call Health 2010

P. Lecoq CERN, Geneva, Switzerland

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

Imaging tool for pancreas and prostate cancer biomarker development

Objectives

- Develop new biomarkers for pancreas and prostate cancer
 - Ex: mAb16D10 antibody for pancreas
 - Ex: ⁶⁸Ga PSMA for prostate
- Introduce PET as an endoscopic imaging tool
- Develop intra-operative interventional imaging techniques

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

CERN – French Physics Teachers - 22 juin 2014

EndoTOFPET-US: Why TOF?

erimed www.cern.ch/cerimed

CERN – French Physics Teachers - 22 juin 2014

53

mm

-205

Technical design

Internal probe : 1 or 2 matrices of 9x18 LYSO pixels

2 LYSO matrices from Proteus. Crystal pitch: 800µm, length: 10mm Coating: ESR reflector by 3M

External plate: 256 matrices of 4x4 LYSO pixels

Photopeak for entire matrix 9*18 with dry contact

Photopeak for entire matrix 4*4 with dry contact

narrow photo-peak for the entire matrix --> uniform LY among pixels

Molecular Imaging in Medicine & Biology

Molecular Imaging to answer challenge of modern biology

-Access real time genomics through *in vivo* imaging of molecular process

-Detect early transformations in a cell, which may lead to pathology (precancerous activity)

-Early detection, prognosis, treatment selection, response to therapy

-Identify molecular pathways from gene to disease (genomics, proteomics)

»Novel molecular targets
»Specific genetic pathways
»Signal transduction

»Cell cycle alteration»Angiogenesis»Apoptosis

Requires specific effort on imaging instrumentation Sensitivity, Spatial and Temporal resolution

Requires targeting the cellular activity with specific contrast agents

CERN – French Physics Teachers - 22 juin 2014 P. Lecoq CERN

Exposition pour un scanner CT

< 0,4 sec/ rotation Organ in a sec (17 cm/sec) Whole body < 10 sec

20 to 50 mSv Radiographie standart 0.1 mSv

P. Lecoq CERN

CERN – French Physics Teachers - 22 juin 2014

La chambre proportionnelle Radiographie digitale à faible dose

Prix Nobel de Physique 1992

Georges Charpak Physicien CERN

CERN – French Physics Teachers - 22 juin 2014

Photon counting in CT

Advantages of photon counting CT:

- Each event has equal weight independent of energy
 - ⇒ Elimination of weight factor proportional to energy of integration imaging
 - \Rightarrow Closer to optimal weighting of E^{-3} *
- Threshold detection allows discrimination of noise and scatter

Requirements :

 Detector: high sensitivity to low-energy X-rays, high count rate capability
 ⇒ count-rate > 10⁶ - 10⁷ counts/s/pixel, *the higher the better*

* R.N. Cahn et al., "Detective quantum efficiency dependence on X-ray energy weighting in mammography", Med. Phys. 26 (12), pp. 2680-2683,

CERN – French Physics Teachers - 22 juin 2014

Détecteur hybride à pixels pour comptage de photons X

Détecteur pour les trajectographes du LHC

Détecteur Médipix pour les rayons X

CERN – French Physics Teachers - 22 juin 2014

Single photon counting versus integrating digital radiography

•SNR for 2 mm thick tumor mass (RMI 156 phantom)

M. G. Bisogni et al., NIMA 546, 14 (2005)

P. Lecoq CERN

CERN – French Physics Teachers - 22 juin 2014