
Alexander	  Mitov	  
	  

Cavendish	  Laboratory	  

Two	  lectures	  on	  top	  quark	  physics	  



ü  The	  basics	  
ü  Top	  and	  EW	  theory;	  precision	  fits	  
ü  Top	  pair	  produc@on	  at	  hadron	  colliders	  [FO,	  threshold	  resumma@on]	  
ü  Top	  decay	  

ü  Factorizable	  and	  non-‐factorizable	  correc@ons	  in	  top	  produc@on	  and	  decay.	  
ü  Does	  it	  make	  sense	  to	  even	  speak	  of	  tops?	  
ü  Single	  top	  produc@on	  
ü  Top	  quark	  mass	  
ü  e+e-‐	  colliders:	  similari@es	  and	  differences	  w/r	  to	  hadron	  colliders	  

ü  Heavy	  flavor	  produc@on;	  how	  top	  differs	  from	  the	  other	  massive	  quarks	  

Addi@onal	  point	  to	  reflect	  on:	  

Addi@onal	  readings:	  

•  Werner	  Bernreuther	  [arXiv:0805.1333]	  
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•  Audience	  with	  diverse	  interests	  (QCD/SM,	  bSM):	  discussion	  should	  be	  useful	  for	  both	  
•  Times	  are	  changing:	  

•  It	  was	  only	  few	  years	  ago	  when	  we	  were	  thinking	  of	  physics	  at	  the	  Born	  level	  	  
	  	  	  	  	  	  focusing	  almost	  exclusively	  on	  the	  ideas	  …	  

•  Such	  a	  way	  of	  thinking	  of	  physics	  is	  not	  adequate	  any	  more:	  
•  LHC	  Run	  I	  showed	  an	  impressive	  level	  of	  agreement	  with	  SM	  (above)	  
•  Will	  try	  to	  emphasize	  the	  important	  issues	  from	  modern	  prospec@ve	  

Modern	  =	  today,	  not	  last	  year	  …	  



ü  The	  SM	  prospec@ve	  
•  Top	  produc@on	  is	  the	  most	  complex	  SM	  process:	  tame	  c,	  tame	  the	  SM	  (needed	  for	  bSM)	  

	  -‐	  massive:	  addi@on	  of	  a	  mass	  in	  a	  problem	  adds	  a	  dimension	  to	  its	  complexity	  
	  -‐	  colored	  
	  -‐	  large	  QCD	  correc@ons	  
	  -‐	  important	  EW	  interac@ons	  (strongly	  interacts	  with	  all	  SM	  par@cles)	  
	  -‐	  results	  in	  very	  complex	  final	  states	  

•  Top	  can	  be	  studied	  perturba@vely:	  (record-‐)	  high	  accuracy	  expected	  (both	  TH	  and	  EXP)	  
•  The	  only	  bare	  quark:	  gives	  direct	  access	  to	  the	  SM	  Lagrangian	  (with	  caveats,	  of	  course)	  

	  
ü  The	  bSM	  prospec@ve	  

•  Top	  is	  a	  major	  background	  for	  many	  (most?)	  bSM	  processes:	  search	  for	  bSM	  “beneath”	  top	  
•  The	  most	  prominent	  current	  discrepancy	  w/r	  to	  SM:	  Tevatron	  top	  AFB	  
•  Decays	  to	  tops;	  top	  loop	  effects	  
•  Very	  large	  coupling	  to	  Higgs:	  if	  anything	  in	  the	  SM	  macers	  for	  Higgs,	  this	  is	  top.	  
•  In	  summary,	  top	  macers	  in	  2	  ways:	  

	  -‐	  through	  its	  parametric	  values	  (e.g.	  Mtop	  and	  EW	  vacuum	  stability)	  
	  -‐	  directly	  (through	  its	  produc@on	  rates)	  





•  Is	  the	  top	  special	  (as	  we	  hear	  all	  the	  @me?):	  it	  depends!	  
•  From	  the	  viewpoint	  of	  QCD:	  NO	  
•  From	  the	  viewpoint	  EW	  :	  YES	  

•  Top	  gets	  most	  of	  its	  correc@ons	  –	  and	  produc@on	  rates	  –	  from	  QCD	  effects.	  But	  it	  gets	  	  
	  	  	  	  	  	  its	  proper@es	  from	  EW	  interac@ons.	  ==>	  both	  are	  very	  important.	  

•  Top’s	  main	  acribute:	  its	  very	  large	  mass:	  Mtop	  ≈	  173	  GeV	  .	  Compare:	  
	   	  *	  MH	  ≈	  125	  GeV	  
	   	  *	  MW	  ≈	  80	  GeV	  
	   	  *	  Mb	  ≈	  5	  GeV	  
	   	  *	  Mc	  ≈	  1.5	  GeV	  

Understanding	  the	  origin	  of	  mass	  is	  a	  major	  open	  problem	  

•  CKM	  elements	  relevant	  for	  top:	  Vtb	  ≈	  1.	  	  
•  Top	  coupling	  to	  non-‐b	  down-‐type	  quarks	  must	  be	  very	  small	  (CKM	  suppression)	  
•  Top	  couplings	  to	  other	  up-‐type	  quarks	  is	  non-‐zero	  at	  loop-‐level	  but	  @ny.	  	  

Any	  significant	  top	  coupling	  to	  non-‐b	  quarks	  might	  be	  a	  sign	  of	  bSM	  physics	  



Top’s	  very	  large	  mass*	  dictates	  its	  proper@es	  (both	  intrinsic	  and	  produc@on	  ones)	  

*	  To	  be	  elaborated	  upon	  later.	  

•  Mtop	  >>	  MW	  	  
	  	  	  	  	  	  Implica@on:	  top	  readily	  decays;	  not	  true	  for	  the	  other	  quarks.	  
•  Γtop	  ≈	  1.5	  GeV	  	  >>	  ΛQCD	  ≈	  0.3	  GeV	  	  
	  	  	  	  	  	  Implica@on:	  top’s	  life@me	  (~1/Γtop)	  is	  much	  smaller	  than	  the	  typical	  	  
	  	  	  	  	  	   	   	   	  	  	  	  hadroniza@on	  @me	  (~1/ΛQCD).	  
	  	  	  	  	  	  Profound	  consequence:	  top	  decays	  before	  forming	  strongly	  interac@ng	  bound	  states	  

	   	   	   	   	  	  	  	  	  	  	  	  (i.e.	  mesons).	  

ü  This	  is	  of	  major	  importance.	  For	  the	  other	  quarks	  we	  have	  to	  make	  conclusions	  based	  on	  	  
	  	  	  	  	  	  modeling	  of	  non-‐perturba@ve	  physics.	  This	  can	  be	  done	  but	  can	  be	  extremely	  tricky.	  
	  	  	  	  	  	  In	  certain	  cases	  even	  beyond	  our	  ability	  to	  model	  QCD	  (not	  even	  speaking	  of	  solving	  it).	  
ü  The	  fact	  that	  top	  decays	  (largely*)	  free	  of	  non-‐perturba@ve	  effects	  gives	  us	  added	  	  
	  	  	  	  	  	  confidence	  that	  we	  know	  what	  we	  are	  doing	  regarding	  SM	  physics	  	  
	  	  	  	  	  	  (it	  really	  macers	  in	  the	  grand	  scheme	  of	  things…).	  

Top	  is	  the	  only	  quark	  that	  decays	  as	  a	  bare	  par@cle.	  



•  We	  refer	  to	  the	  top	  mode	  based	  	  
	  	  	  	  	  	  on	  the	  measured	  final	  state.	  	  
	  	  	  	  	  	  Here	  are	  the	  SM	  op@ons:	  
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In particular one can easily show that for the top, the 
lepton+ (or the d), in the top rest frame,  tends to be 
emitted in the same direction of the top spin.

Note that this has nothing to do with W polarization! 
In particular one studies spin correlations between the 
top and anti-top in ttbar production and the spin of 
the top in single top. 

Results depend on the degree of polarization (p) of 
the tops themselves and from the choice of the “spin-
analyzer” ki.

How to measure top spin

1

Γ

dΓ

d cos θ
=

1 + p ki cos θ

2

Top quark decays
Since mt > MW + mb a top quark decays
predominantly into a b quark and an on-shell W
boson

t → W+ + b
|
→ l+ + ν

t → W+ + b
|
→ q + q̄

the branching ratio to leptons is given by
counting the decay modes of the W , eν̄e, µν̄µ,
τ ν̄τ and three colours of ud̄ and cs̄,

BR(W+ → e+ν̄) =
1

3 + 3 + 3
≈ 11%.

the branching ratio of top pairs to one flavour of
lepton + jets is 2 × 1

9 × 2
3 ≃ 0.15

QCD, top and LHCLecture IV: Top Physics – p.6/48



•  At	  hadron	  colliders	  top	  quarks	  are	  produced	  in	  pairs	  (dominant)	  or	  singly.	  
Top Pair-Production ChannelsTop Pair-Production Channels

Top Single-Production Channels

Top Single-Production Channels

Top Single-Production Channels

•  Top	  quark	  produc@on	  rates,	  for	  various	  ini@al	  states	  and	  colliders:	  

substantial uncertainties. In turn, large-x gluons play an important role in theoretical pre-

dictions of many BSM scenarios like gluino pair production [15], high-mass Kaluza-Klein

graviton production [16–18], resonances in the tt̄ invariant mass spectrum [19, 20], quark

compositeness in inclusive jet and dijet production [21–24] and many others. The availabil-

ity of the full NNLO calculation makes top quark pair production the only hadron collider

process that is both sensitive to the gluon and can be consistently included in a NNLO

PDF fit without any approximations. Hadronic constraints on the gluon PDF are provided

also by inclusive jet and dijet production [25–28] and isolated photon production [29, 30],

though these two processes are only known to NLO and a↵ected by substantial scale un-

certainties.1

The focus of this paper is, on the one hand, to provide an up-to-date summary of

the theoretical uncertainties on the total tt̄ cross section, and on the other hand, to show

how top quark data can be used to constrain the large-x gluon PDF. Indeed, unlike the

Tevatron, top quark pair production at the LHC is dominated by gg scattering, thus

providing a complementary probe of the gluon PDF. As shown in Table 1, at the LHC the

relative contribution of the gg subprocess is between 85% and 90% depending on the beam

energy, with qq being about 10-15%, almost the opposite of the Tevatron.

TeVatron LHC 7 TeV LHC 8 TeV LHC 14 TeV

gg 15.4% 84.8% 86.2% 90.2%

qg + q̄g -1.7% -1.6% -1.1% 0.5%

qq 86.3% 16.8% 14.9% 9.3%

Table 1. The relative contribution of the various partonic sub-channels to the NNLO+NNLL cross
section for di↵erent colliders and collider energies, computed with the MSTW2008NNLO PDFs.
We loosely label with qq the sum of all processes without gluons in the initial state.

To illustrate the range of Bjorken-x’s to which the top cross section is sensitive, the

correlation [32] between the top quark production cross section and the gluon and the up

quark PDFs is shown in Fig. 1 for the various cases that we will discuss in the paper:

Tevatron Run II, LHC 7, 8 and 14 TeV. A correlation whose absolute magnitude is close

to 1 indicates that variations of PDFs with a particular value of x will in turn translate

into cross-section variations. It is clear from Fig. 1 that for the LHC the top quark cross

section directly probes the gluon in the range of x between x = 0.1 and x = 0.5, where

gluon PDF uncertainties are relatively large.

The outline of this paper is as follows. In Sect. 2 we discuss the settings of the

calculation and the treatment of the various theoretical uncertainties. In Sect. 3 we provide

up-to-date predictions for the tt̄ cross section at the Tevatron and LHC and compare with

the most recent experimental data. In Sect. 4 we quantify the impact of the available

top data on the gluon PDF, show how it reduces the gluon PDF’s large-x uncertainties,

1Recent progress on the NNLO cross section for jet production was presented in Ref. [31], so in the near

future it should also be possible to consistently include this process in NNLO PDF fits.

– 2 –

Ques@on:	  any	  guesses	  why	  the	  rate	  for	  the	  qg	  reac@on	  (starts	  at	  NLO)	  is	  nega@ve?	  Is	  this	  OK?	  

quark production. In each section, we first review the presently available standard model
predictions and discuss then possible new physics effects. Moreover, experimental results
from the Tevatron and measurement perspectives at the LHC will be briefly outlined. As
usual in particle phenomenology, values of particles masses and decay widths are given
in natural units putting ! = c= 1.

Table 1: Upper part: number of tt̄ events produced at the Tevatron and expected tt̄ produc-
tion rates at the LHC and at a future e+e− linear collider (ILC), where L is the integrated
luminosity of the respective collider in units of fb−1. Lower part: Number of t and t̄
events at the Tevatron and expected number at the LHC produced in single top reactions.

tt̄ pairs dominant reaction Ntt̄
Tevatron: pp̄ (1.96 TeV) qq̄→ tt̄ ∼ 7 ·104×L
LHC: pp (14 TeV) gg→ tt̄ ∼ 9 ·105×L
ILC: e+e− (400 GeV) e+e− → tt̄ ∼ 800×L

single top dominant reaction (Nt +Nt̄)
Tevatron: u+b W−→d+ t ∼ 3 ·103×L
LHC: u+b W−→d+ t ∼ 3.3 ·105×L

2. The profile of the top quark
The top quark couples to all known fundamental interactions. Because of its large mass,
it is expected to couple strongly to the forces that break the electroweak gauge symmetry.
While the interactions of the top quark have not been explored in great detail so far,
its mass has been experimentally determined very precisely. In this section we briefly
describe what is known about the properties of the top quark, i.e., its mass, lifetime, spin,
and its charges. Because its mass plays a central role in the physics of this quark, we shall
first discuss the meaning of this parameter.

2.1. Mass
The top mass is a convention-dependent parameter, like the other parameters of the SM.
As the top quark does not hadronize (see section 2.2), it seems natural to exploit the
picture of the top quark being a highly unstable bare fermion. This suggests to use the
concept of on-shell or pole mass, which is defined to be the real part of the complex-
valued pole of the quark propagator St(p). This is a purely perturbative concept. A quark
is unobservable due to colour confinement, so its full propagator has no pole. In finite-
order perturbation theory the propagator of the top quark has a pole at the complex value
√

p2 =mt− iΓt/2, where mt is the pole or on-shell mass and Γt is the decay width of the

2

From	  W.	  Bernreuther	  	  ‘08	  
Top	  pairs	  only	  



Top	  quark	  quantum	  numbers	  
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•  Electric	  charge	  =	  +2/3|e|.	  
•  Because	  tops	  are	  mostly	  pair	  produced,	  it	  was	  only	  recently	  shown	  that	  
	  	  	  	  	  	  the	  exo@c	  charge	  -‐4/3	  (i.e.	  decay	  to	  bW-‐)	  is	  unlikely.	  	  

•  CKM:	  from	  weak	  decays	  it	  follows	  that:	  

	  
•  Limits	  from	  measurements	  of	  top	  decays	  are	  much	  weaker.	  

Γt/mt ≃ 0.008. Thus one can factorize, to good approximation, the theoretical description
of these reactions into the production of on-shell single top quarks or tt̄ pairs (being
produced in a certain spin configuration) and the decay of t and/or t̄. We treat top-quark
decays first while the survey of hadronic production of these quarks is postponed to the
following sections. We shall review (polarized) top-quark decays in the SM, then discuss
effects of possible anomalous couplings in the tbW vertex, and finally consider several
new decay modes which are possible in various SM extensions.

3.1. SM decays
In the SM, which involves three generations of quarks and leptons, the only two-particle
decays of the top quark4 which are possible to lowest order in the (gauge) couplings
are t → bW+, t → sW+, and t → dW+. Their rates are proportional to the squares of
the CKM matrix elements |Vtq|2, q = b,s,d, respectively. The rate of t → X , i.e. the
total decay width Γt of the top quark, is given by the sum of the widths of these three
decay modes, as the branching ratios of the loop-induced flavour-changing neutral current
decays are negligibly small in the SM (see section 3.2.4). The analysis of data from weak
decays of hadrons yields 0.9990 < |Vtb| < 0.9992 at 95% C.L. [19], using the unitarity
of the CKM matrix. From the recent observation of the oscillation of Bs ↔ B̄s mesons
by the D0 and CDF experiments at the Tevatron and from analogous data on Bd ↔ B̄d
oscillations one can extract the ratio 0.20 < |Vtd/Vts| < 0.22 [19]. The unitarity relation
|Vtb|2+ |Vts|2+ |Vtd|2 = 1 implies that the total decay rate is completely dominated by
t → bW+, and one gets for the branching ratios

B(t→ bW+) = 0.998, B(t→ sW+) ≃ 1.9×10−3, B(t→ dW+)≃ 10−4. (3.1)

There is direct information from the Tevatron which implies that |Vtb|≫ |Vtd|, |Vtd|, with-
out using the unitarity constraint. The CDF and D0 collaborations measured

R≡
B(t → bW )

∑q=b,s,d B(t→ qW )
=

|Vtb|2

|Vtb|2+ |Vts|2+ |Vtd|2
(3.2)

by comparing the number of tt̄ candidates with 0, 1, and 2 tagged b jets. The right-hand
side of (3.2) is the standard-model interpretation of this ratio. A collection of CDF and
D0 results on R is given in [28,29]; the recent D0 result is R= 0.97+0.09

−0.08 [29]. The D0 [3]
and the CDF [4] experiments reported evidence for single top quark production. The
agreement of the measured production cross section with the SM expectation was used
by these experiments for a direct determination of the CKM matrix element Vtb with the
result 0.68< |Vtb|≤ 1 [3] and |Vtb| = 0.88±0.14±0.07 [4]. (See also section 5).

3.1.1. The total decay width:

As just discussed, the total decay width of the top quark is given in the SM, to the
precision required for interpreting the Tevatron or forthcoming LHC experiments, by the

4Unless stated otherwise, the discussion of this section applies analogously also to t̄ decays.

6

•  Top	  spin:	  strongly	  correlated	  with	  the	  helicity	  of	  the	  W	  

V −A structure and angular momentum conservation allow the decay into a zero-helicity
and negative helicityW boson, but the decay amplitude intoW (λW = +1) is suppressed
by a factor m2b/m2W . This is due to the fact that the V −A law forces the b quark, if it
were massless, to have negative helicity – but this is in conflict with angular momentum
conservation. The three cases are illustrated in figure 1. For the decay fractions one

W+b t W+b t

W+b t

Figure 1: Illustration of top-quark decay into a b quark and aW+ boson with λW = 0,∓1.
ForW+(λW = +1) the b quark must have positive helicity (to lowest order), which has
vanishing probability for mb → 0.

obtains at tree level, putting mb = 0, and using mW = 80.40 GeV:

FB0 =
m2t

m2t +2m2W
= 0.6934−0.0025× (171−mt [GeV]) ,

FB− =
2m2W

m2t +2m2W
= 0.3066+0.0025× (171−mt [GeV]) , FB+ = 0 . (3.7)

Once gluon (and photon) radiation is taken into account, F+ ̸= 0 even in the limit mb = 0.
The W -helicity fractions F0,∓ were computed in [36, 46], taking the O(αs) QCD and
O(α) electroweak corrections, and the corrections due to the finiteW width and mb ̸= 0
into account. These corrections are very small; in particular they generate a small fraction
F+. The result of [36] is

F0 = 0.99×FB0 , F− = 1.02×FB− , F+ = 0.001 . (3.8)

For t̄ → b̄W− we have F̄0 = F0, F̄− = F+, and F̄+ = F− in the SM. Violations of these
relations due to theCP-violating KM phase δKM are negligibly small.
The large fraction F0 ≃ 0.7 signifies that top-quark decay is a source of longitudinally
polarizedW bosons – in fact, the only significant one at the LHC. (Almost allW bosons
produced in QCD reactions are transversely polarized.) Recall that, in the SM, the lon-
gitudinally polarized state of theW boson is generated by the charged component of the
SU(2) Higgs doublet field. If the dynamics of electroweak symmetry breaking is differ-
ent from the SM Higgs mechanism, one may expect deviations of the tbW vertex from its
SM structure, and F0 should be sensitive to it. The fraction F+ is obviously sensitive to
a possible V +A admixture in the charged weak current involving the top quark. These
issues will be addressed in sections 3.1.3 and 3.2.1.
Information about the polarization of the W boson is obtained from the angular distri-
butions of one of its decay products, W+ → ℓ+νℓ,qq̄′. As a u-type jet cannot be distin-
guished experimentally from a d-type jet, the best choice is to consider a charged lepton

8

SM	  predic@ons	  for	  the	  W	  helicity	  frac@ons:	  

V −A structure and angular momentum conservation allow the decay into a zero-helicity
and negative helicityW boson, but the decay amplitude intoW (λW = +1) is suppressed
by a factor m2b/m2W . This is due to the fact that the V −A law forces the b quark, if it
were massless, to have negative helicity – but this is in conflict with angular momentum
conservation. The three cases are illustrated in figure 1. For the decay fractions one

W+b t W+b t

W+b t

Figure 1: Illustration of top-quark decay into a b quark and aW+ boson with λW = 0,∓1.
ForW+(λW = +1) the b quark must have positive helicity (to lowest order), which has
vanishing probability for mb → 0.
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≈	  0.7	   ≈	  0.3	  

Very	  sensi@ve	  to	  V-‐A	  structure	  of	  the	  tbW	  vertex	  



The	  run-‐up	  to	  the	  discovery	  of	  the	  top	  quark	  is	  an	  important	  lesson	  in	  today	  searches.	  Electroweak theory tests: loop level
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•  We	  had	  an	  idea	  about	  Mtop	  before	  	  
	  	  	  	  	  	  top	  quarks	  were	  first	  seen:	  

•  Using	  the	  known	  Higgs	  and	  W	  masses	  one	  	  
	  	  	  	  	  	  can	  again	  indirectly	  “rediscover”	  the	  top.	  
	  	  	  	  	  	  The	  returned	  mass	  is	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  	  
	  	  	  	  	  	  impressive	  agreement	  with	  direct	  	  
	  	  	  	  	  	  determina@ons.	  
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Figure 3: ��2 profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W
boson mass (bottom left) and the e↵ective weak mixing angle (bottom right). The data points placed along
��2 = 1 represent direct measurements of the respective observable and their ±1� uncertainties. The grey
(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.
For the blue bands as a function of mt, MW and sin2✓`

e↵

the direct measurements of the observable have
been excluded from the fit in addition (indirect determination). The solid black curves in the lower plots
represent the SM prediction for sin2✓`

e↵

and MW derived from the minimal set of input measurements, as
described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)
theoretical uncertainties in the fit.

band) gives

sin2✓`
e↵

= 0.231496± 0.000030mt ± 0.000015MZ
± 0.000035

�↵had (5)

± 0.000010↵S ± 0.000002MH
± 0.000047

theo

, (6)

= 0.23150± 0.00010
tot

, (7)

which is compatible and more precise than the average of the LEP/SLD measurements [9]. The
total uncertainty is dominated by that from �↵

had

and mt, while the contribution from the uncer-
tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties
would lead to a total uncertainty in the sin2✓`

e↵

prediction of 0.00007.

Finally, the top quark mass, cf. Fig. 3 (top right, blue band), is indirectly determined to be

mt = 175.8+2.7
�2.4 GeV , (8)

in agreement with the direct measurement and cross-section based determination (cf. Footnote 5).
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These experimental results should be compared to the

theoretical calculations that yield 7.16+0.20
−0.23 pb for top-quark

mass of 173.3 GeV/c2 [1] at
√

s = 1.96 TeV, σtt̄ = 172.0+6.4
−7.5 pb

at
√

s = 7 TeV, and σtt̄ = 245.8+8.8
−10.6 pb at

√
s = 8 TeV, at the

LHC [1]( see Section B).
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Figure 1: Measured and predicted tt production cross sections
from Tevatron energies in pp collisions to LHC energies in
pp collisions. Tevatron data points at

√
s = 1.8 TeV are from

Refs. [41,42]. Those at
√

s = 1.96 TeV are from Refs. [19–21].
The ATLAS and CMS data points are from Refs. [25,35]
and [30,36,37], respectively. Theory curves are generated us-
ing [1] for mt = 173.3 GeV/c2. Figure adapted from Ref. [40].

In Fig. 1, one sees the importance of pp at Tevatron energies

where the valence antiquarks in the antiprotons contribute to

the dominant qq production mechanism. At LHC energies, the

dominant production mode is gluon-gluon fusion and the pp-pp

difference nearly disappears. The excellent agreement of these

measurements with the theory calculations is a strong validation

of QCD and the soft-gluon resummation techniques employed

in the calculations. The measurements reach high precision and

provide stringent tests of pQCD calculations at NNLO+NNLL

level including their respective PDF uncertainties.

Most of these measurements assume a t → Wb branching

ratio of 100%. CDF and DØ have made direct measurements

December 18, 2013 12:01

•  Impressive	  agreement	  between	  theory	  and	  experiment	  across	  colliders	  and	  collider	  energies	  

PDG	  2013	  

•  Theory	  includes	  NNLO	  +	  NNLL;	  let’s	  discuss	  what	  this	  means	  in	  the	  rest	  of	  this	  lecture.	  
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
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2�
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2
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2
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expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
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Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�
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ij + L

2
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.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s
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2
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•  Let’s	  begin	  with	  the	  simplest	  (theore@cally)	  observable:	  the	  total	  cross-‐sec@on.	  

•  A	  dimensional	  quan@ty	  (typically	  in	  [pb]).	  Tells	  us	  the	  rate	  for	  producing	  top	  pairs.	  
	  	  	  	  	  	  The	  total	  number	  of	  produced	  pairs	  is	  obtained	  a~er	  mul@plying	  by	  the	  collider	  Luminocity.	  

•  In	  reality,	  the	  total	  x-‐sec@on	  cannot	  be	  measured	  because	  of	  the	  presence	  of	  cuts.	  
•  Cuts	  represent	  the	  basic	  fact	  that	  any	  detector	  has	  a	  finite	  size.	  What	  is	  actually	  measured	  	  
	  	  	  	  	  	  are	  the	  number	  of	  events	  within	  the	  detector.	  

•  The	  part	  of	  phase	  space	  which	  is	  covered	  by	  the	  detector	  is	  called	  fiducial	  volume	  	  
	  	  	  	  	  	  (or	  fiducial	  x-‐sec@on).	  

Note:	  we	  pair	  produce	  top	  quarks,	  but	  due	  to	  the	  finiteness	  of	  the	  fiducial	  volume,	  	  
	  it	  may	  happen	  that	  one	  top	  from	  the	  pair	  goes	  inside	  	  the	  detector	  (and	  is	  thus	  detected)	  	  
	  while	  the	  second	  goes	  outside	  of	  the	  detector.	  

	  
•  This	  way	  we	  detect	  events	  containing	  a	  single	  top	  quark,	  not	  a	  pair.	  	  
	  	  	  	  	  	  Yet	  this	  is	  the	  same	  process.	  Is	  this	  OK?	  What	  about	  single	  top?	  
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where:	  

Jacobian	  factor	   Partonic	  luminocity	  

•  We	  sum	  over	  all	  possible	  pairs	  of	  partons.	  The	  details	  depend	  on	  the	  perturba@ve	  order	  
•  LO:	  qqbar,	  gg	  
•  NLO:	  LO	  ones	  +	  qg	  
•  NNLO:	  NLO	  ones	  +	  qq,qq’,	  qqbar’	  

•  Thus,	  star@ng	  with	  NNLO,	  all	  possible	  partonic	  channels	  contribute!	  
•  Note:	  q,	  qbar,	  etc.	  run	  over	  all	  quark	  flavors	  lighter	  than	  top	  (u,d,s,c,b).	  	  
•  This	  is	  known	  as	  a	  scheme	  with	  5	  ac@ve	  flavors	  (i.e.	  NF=5).	  
•  We	  do	  not	  have	  to	  work	  in	  this	  scheme	  (it	  is	  a	  macer	  of	  choice!).	  	  
	  	  	  	  	  	  A	  natural	  choice	  for	  top	  at	  TEV/LHC	  
•  An	  alterna@ve	  would	  be	  to	  work	  with	  6	  flavor	  scheme	  (i.e.	  we	  need	  top	  pdf).	  	  
•  This	  is	  not	  needed	  for	  top	  @LHC	  but	  at	  a	  future	  higher	  energy	  collider	  (100TeV	  for	  example).	  
•  Total	  x-‐sec@on	  is	  dominated	  by	  scales	  ~	  Mtop,	  thus	  even	  for	  future	  collider	  NF=5	  scheme	  is	  OK	  
•  For	  differen@al	  x-‐sec@on,	  PT	  distribu@on	  at	  high	  PT,	  NF=6	  scheme	  would	  start	  to	  be	  needed.	  
•  Note:	  same	  situa@on	  for	  bocom	  produc@on.	  	  
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The	  computed	  x-‐sec@on	  is	  a	  convolu@on	  of	  a	  partonic	  flux	  and	  a	  perturba@ve	  x-‐sec@on	  

•  The	  above	  equa@on	  is	  not	  exact	  (due	  to	  factoriza@on	  breaking	  effects)	  
•  Factoriza@on	  breaking	  effects	  for	  inclusive	  observables	  are	  small	  ~	  ΛQCD/μF	  <<	  1	  
•  For	  less	  inclusive	  observables,	  these	  effects	  start	  to	  grow.	  	  
•  If	  we	  try	  to	  imagine	  fully	  exclusive	  final	  states	  then	  these	  correc@on	  become	  O(1),	  
	  	  	  	  	  	  i.e.	  factoriza@on	  breaks	  down	  and	  the	  above	  equa@on	  is	  not	  applicable	  any	  more.	  

To	  remember	  (for	  non-‐experts):	  
	  
•  Factoriza@on	  breaking	  effects	  are	  usually	  not	  a	  worry	  
•  But	  we	  cannot	  ignore	  them	  altogether	  
•  Every	  @me	  we	  do	  something	  kinema@cally	  extreme,	  it	  is	  worth	  checking	  if	  it	  is	  safe.	  
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Meaning	  of	  the	  various	  arguments	  above.	  

•  m	  –	  mass	  of	  the	  heavy	  quark.	  It	  is	  a	  scheme	  dependent	  quan@ty.	  Usually	  the	  pole	  mass.	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  ≤	  β	  <	  1.	  

•  s	  –	  partonic	  c.m.	  energy.	  s=x1x2Scollider	  	  ;	  x1,2:	  partonic	  frac@ons;	  we	  integrate	  over	  them.	  	  

•  β	  is	  the	  only	  kinema@cal	  variable	  (the	  only	  dimensionless	  one!).	  	  
	  	  	  	  	  	  It	  has	  a	  meaning	  of	  a	  rela@ve	  velocity	  of	  the	  two	  tops.	  

•  β≈0	  is	  called	  partonic	  threshold	  (i.e.	  4m2≈s).	  All	  the	  energy	  in	  the	  system	  is	  taken	  by	  the	  
	  	  	  	  	  	  masses;	  ==>	  no	  energy	  le~	  for	  addi@onal	  radia@on.	  
•  Therefore,	  only	  so~	  radia@on	  is	  possible	  (so~	  ==	  vanishing	  energy).	  
	  	  	  	  	  	  Important:	  This	  is	  the	  basis	  of	  the	  so~	  gluon	  resumma@on	  which	  we	  will	  discuss	  later.	  
•  β≈1	  is	  the	  high-‐energy	  limit	  (i.e.	  4m2	  <<	  s,	  or	  simply	  put,	  m	  à	  0).	  	  
	  
	  
	  con@nue…	  
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
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and s
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
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ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s
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•  Important:	  

	  	  	  	  	  	  	  	  	  Recall:	  	  β≈1	  is	  the	  high-‐energy	  limit	  (i.e.	  4m2	  <<	  s,	  or	  simply	  put,	  m	  à	  0).	  
	  
•  In	  high	  energy	  collisions,	  the	  mass	  of	  a	  parton	  is	  not	  its	  intrinsic	  property	  anymore.	  	  
•  All	  that	  macers	  is	  if	  the	  mass	  is	  much	  smaller	  than	  the	  relevant	  kinema@c	  scale	  Q.	  	  
•  If	  m<<Q	  we	  can	  simply	  set	  m=0.	  	  
•  If	  x-‐sec@on	  diverges	  due	  to	  collinear	  singulari@es,	  then	  we	  need	  to	  use	  	  
	  	  	  	  	  	  collinearly	  safe	  observables,	  like	  jets,	  or	  introduce	  PDF	  /	  fragmenta@on	  func@ons	  	  
	  	  	  	  	  	  that	  “absorb”	  the	  collinear	  singulari@es.	  
•  If	  we	  leave	  small	  but	  non-‐zero	  mass	  then	  we	  have	  an	  ar@ficially	  finite	  result.	  
•  It	  contains	  terms	  like	  Log(m/Q)	  >>1.	  
•  Moreover	  at	  all	  orders	  in	  perturba@on	  theory	  we	  have	  terms	  like	  αS

n	  Logk(m/Q).	  
•  This	  breaks	  the	  convergence	  of	  the	  perturba@ve	  expansion	  by	  effec@vely	  changing	  

	  	  
	   	   	   	   	   	  	  αS

n	  à	  αS
n	  Logk(m/Q)	  >>	  αS

n	  	  
	  
•  Such	  term	  then	  need	  to	  be	  resummed	  to	  all	  orders	  (different	  kind	  of	  resumma@on	  w/r	  to	  the	  	  
	  	  	  	  	  	  so~	  gluon	  resumma@on	  men@oned	  above!).	  
	  
	  
•  Above	  is	  true	  for	  all	  massive	  partons	  t,b,c	  but	  also	  e	  in	  the	  context	  of	  QED.	  

Mele,	  Nason	  ’91;	  natural	  generaliza@on	  to	  amplitudes	  see	  Mitov,	  Moch	  ’06	  ‘07	  
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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, ↵S is the MS coupling renormalized with NL = 5
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2 and �
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All partonic cross-sections are known through NNLO [1-4]. The scaling functions
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(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃
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The	  computed	  x-‐sec@on	  is	  a	  convolu@on	  of	  a	  partonic	  flux	  and	  a	  perturba@ve	  x-‐sec@on	  

•  μF	  :	  factoriza@on	  scale;	  separates	  long	  distance	  (pdf)	  from	  short	  distance	  (partonic	  x-‐sec@on)	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  effects	  	  
•  It	  is	  unphysical.	  It	  appears	  as	  a	  result	  of	  the	  approxima@ons	  we	  make	  	  
	  	  	  	  	  	  (i.e.	  the	  factorized	  form	  of	  the	  above	  equa@on).	  
•  There	  is	  no	  “first	  principles”	  idea	  about	  how	  to	  choose	  its	  value.	  	  
•  In	  top	  physics	  we	  set	  it	  equal	  to	  the	  relevant	  hard	  scale:	  

•  For	  the	  total	  x-‐sec@on	  only	  one	  such	  scale	  exists:	  Mtop.	  
•  For	  more	  differen@al	  observables	  becer	  values	  are	  HT/2	  or	  mT,top	  with:	  
•  For	  even	  more	  extreme	  kinema@cs,	  even	  the	  rapidity	  might	  have	  to	  be	  included	  (not	  yet)	  

µ̂(2) =
1

2

X

i

mT ,i , i 2 final state , (3.4)

µ̂(3) = mt , (3.5)

with the transverse masses mT ,i =
q

p2
T ,i +m2

i . We point out that, since in our calculations

the top quarks are treated as stable particles at the level of hard matrix elements, the

di↵erence between eq. (3.3) and (3.4) is the contribution to the latter of the transverse

momentum of the massless parton which is possibly present in the final state (owing to

real-emission corrections); the scale of eq. (3.4) is nothing but HT/2.

Our simulations are carried out at the 8 TeV LHC. Since we only consider the process

of eq. (2.1), i.e. top-pair production without any background contamination, all of our

events are tt̄ ones by construction. On the other hand, in order to perform a more realistic

analysis, we also impose the following event selection: on top of having two oppositely-

charged leptons (electrons and/or muons), events are required to contain at least two

b-flavored jets, with jets defined according to the anti-kT algorithm [32] with R = 0.5, as

implemented in FastJet [33]. The events so selected are then subject to the following cuts:

�

�⌘(`±)
�

�  2.4 , pT (`
±) � 20 GeV ,

|⌘(Jb)|  2.4 , pT (Jb) � 30 GeV . (3.6)

If more than two b-jets are present, the cuts above are imposed on the two hardest ones.

In order to simplify our analysis, b-hadrons have been set stable in HERWIG6, so that the

vast majority of the events just contain the two charged leptons arising from top decays.

In addition to the cuts of eq. (3.6), we have also checked the e↵ects of imposing lepton-jet

isolation cuts: these being negligible, we shall not consider them any further in this paper.

3.1 Calculation of the moments and of the functions fC,U,L(mt)

With the settings described above, we have simulated tt̄ production in all of the six cal-

culational scenarios of table 2; in the case of NLO+PS+MS (which we believe to give the

best description of SM physics, and is thus treated as our reference computation), results

have been obtained with all of the three scales choices of eqs. (3.3)–(3.5), while in all the

other cases only the scale of eq. (3.3) has been considered.

Each of these calculations has been performed eleven times, once for each value of the

top quark mass chosen in the discrete set:

mt = (168, 169, . . . , 178) GeV . (3.7)

In each of these runs, we have computed the first four Mellin moments for all the observables

listed in table 1, both without applying any cuts, and with the selection cuts of eq. (3.6); all

moments are evaluated on the fly (i.e. not a-posteriori using the corresponding di↵erential

distribution), as explained in appendix A. At the end of the runs, we have the predictions

for the Mellin moments that correspond to the central scales and PDF set, and to all non-

central scales and PDFs that belong to the relevant error set; as already explained, all the

non-central results do not require additional runs, but are obtained through reweighting.
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•  Because	  there	  is	  no	  unique	  (or	  “best”)	  choice	  for	  the	  value	  of	  this	  scale,	  the	  philosophy	  is:	  
	  	  	  	  	  	  we	  pick	  one	  reasonable	  value	  (called	  central	  value)	  and	  then	  vary	  μF	  around	  it.	  
•  How	  much	  to	  vary	  is	  anybody’s	  guess	  (more	  later)	  

•  μR	  -‐	  Renormaliza@on	  scale.	  This	  is	  the	  scale	  at	  which	  the	  running	  coupling	  is	  evaluated.	  
•  Natural	  choice:	  	  μF	  =	  μR	  =	  Q	  (=Mtop).	  Has	  to	  be	  varied,	  too.	  
•  One	  idea	  exists	  about	  how	  to	  fix	  its	  value	  (BLM).	  Comes	  from	  the	  requirement	  for	  restoring	  
	  	  	  	  	  	  conformal	  invariance	  of	  the	  QCD	  Lagrangian.	  Cau@on:	  could	  work	  very	  well,	  but	  not	  always!	  

Brodsky,	  Lepage,	  Mackenzie	  ‘83	  
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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All partonic cross-sections are known through NNLO [1-4]. The scaling functions
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can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s
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The	  computed	  x-‐sec@on	  is	  a	  convolu@on	  of	  a	  partonic	  flux	  and	  a	  perturba@ve	  x-‐sec@on	  

•  αS:	  the	  MSbar	  renormalized	  strong	  coupling	  through	  the	  same	  perturba@ve	  order	  as	  the	  	  
	  	  	  	  	  	  partonic	  crosss-‐sec@on.	  
•  It	  is	  running	  with	  NF=5	  ac@ve	  flavors	  (same	  as	  pdf).	  This	  could	  be	  chosen	  differently.	  
•  Note:	  the	  strong	  coupling	  αS	  appears	  in	  two	  places:	  explicitly	  in	  the	  partonic	  cross-‐sec@on	  
	  	  	  	  	  	  but	  also	  implicitly	  in	  the	  partonic	  fluxes	  (through	  their	  DGLAP	  evolu@on).	  
•  Note:	  nowadays	  we	  typically	  use	  the	  LHAPDF	  library	  for	  pdf	  evolu@on.	  It	  provides	  us	  with	  
	  	  	  	  	  	  the	  evolved	  strong	  coupling.	  This	  way	  we	  ensure	  we	  use	  the	  same	  coupling	  	  
	  	  	  	  	  	  (i.e.	  defined	  the	  same	  way)	  in	  both	  places.	  

•  More	  on	  the	  choice	  of	  scales:	  	  

•  If	  we	  use	  a	  running	  scale	  (also	  called	  dynamic)	  we,	  in	  essence,	  include	  certain	  higher	  order	  	  
	  	  	  	  	  	  terms.	  For	  example,	  at	  NLO	  (b0,1	  is	  the	  beta	  func@on	  of	  QCD):	  	  
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is running between the b and the t masses and because of their large diÆerence

we simply fix nf = 5. However, in practical applications (especially with scales of

the order of the b and the c quark) the strong ordering assumption is not always

valid and therefore the choice of nf is somehow ambiguous. The common practice

is to change the value of nf by one unit when the hard scale crosses the mass of

the corresponding heavy quark. Such a change should be supplemented with an

additional constraint that relates the values of the strong coupling evaluated in

the two schemes at the switching point. In the MS renormalization scheme, the

strong coupling is continuous at the switching points [19] ( see also [4]), up to

negligible corrections of order O(Æ3
S).

Now it is easy to show that indeed QCD enjoys the property of asymptotic

freedom [20]. In a regime where the strong coupling is small, from (2.15) and

(2.12), it is easy to see that the strong coupling is a decreasing function of the

scale µ if the number of flavors nf < 33/2. That requirement is satisfied in QCD.

The exact solution of Eq.(2.12) to NLO is given by:

ÆS(µ2) =
1

b0 ln(µ2/§2)

(

1° b1 ln [ln(µ2/§2)]

b2
0 ln(µ2/§2)

)

. (2.16)

One can use this expression in order to relate the values of the strong coupling at

two diÆerent scales with NLO accuracy [21]:

ÆS(k2) =
ÆS(µ2)

1 + b0ÆS(µ2) ln(k2/µ2)

√

1° b1

b0

ÆS(µ2)

1 + b0ÆS(µ2) ln(k2/µ2)
(2.17)

£ ln(1 + b0ÆS(µ2) ln(k2/µ2)) +O
≥
Æ2

S(µ2)[ÆS(µ2) ln(k2/µ2)]n
¥ !

.

The constant § contains all the information about the boundary condition to

which Eq.(2.12) must be subjected. It is a low energy scale where the strong

coupling diverges. As we mentioned in Chapter 1, § represents the border between

the perturbative and non-perturbative regimes of QCD. In practice the value of §
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

The	  computed	  x-‐sec@on	  is	  a	  convolu@on	  of	  a	  partonic	  flux	  and	  a	  perturba@ve	  x-‐sec@on	  

Se�ng	  	  	  μF	  =	  μR	  =	  μ,	  the	  partonic	  cross-‐sec@on	  reads	  through	  NNLO:	  

2 M. CZAKON, P. FIEDLER, A. MITOV AND J. ROJO

2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

and	  	  
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LO	   NLO	   NNLO	  

•  The	  LO	  and	  NLO	  x-‐sec@ons	  are	  known	  fully	  differen@ally	  (as	  well	  as	  the	  inclusive	  ones)	  since	  
	  	  	  	  	  	  the	  late	  1980’s.	  
•  The	  NNLO	  total	  x-‐sec@ons	  are	  now	  known,	  too.	  Differen@al	  ones	  are	  not	  yet	  known	  	  
	  	  	  	  	  	  through	  NNLO,	  but	  this	  will	  change	  very	  soon.	  

•  Various	  approxima@ons	  are	  known;	  we	  will	  discuss	  them	  later.	  

•  The	  func@ons	  ~	  L	  are	  of	  one	  order	  lower,	  i.e.	  the	  NNLO	  ones	  σ(2,1)	  and	  σ(2,2)	  can	  be	  derived	  	  
	  	  	  	  	  	  from	  the	  NLO	  x-‐sec@ons	  σ(1).	  
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How	  to	  derive	  the	  scale	  dependence	  for	  μF	  =	  μR	  =	  μ	  ?	  

•  Recall	  that	  the	  LHS	  is	  formally	  independent	  of	  μ	  
•  Take	  a	  log-‐deriva@ve	  w/r	  to	  μ	  of	  both	  sides.	  LHS	  vanishes.	  
•  The	  pdf’s	  sa@sfy	  DGLAP	  evolu@on	  equa@on,	  i.e.	  the	  log-‐deriva@ve	  w/r	  to	  μ	  of	  the	  pdf	  
	  	  	  	  	  	  is	  the	  pdf	  convoluted	  with	  the	  spli�ng	  func@on.	  

The	  remaining	  procedure	  is	  straigh�orward,	  and	  we	  get:	  

contribution from the counterterm�s̃

(2)

qq̄,NS

(4.8) cancels in the complete qq̄ ! tt̄+X result, the

point-wise cancellation of the collinear singularities (within the numerical precision) observed

both in this paper and in Ref. [1] serves as an additional check of our setup.

5 Scale dependence

The scale dependent terms �

(1,1)
ij , �

(2,1)
ij and �

(2,2)
ij in Eq. (2.4) can be derived from: a) the

requirement that the measured hadronic cross-section �

tot

in Eq. (2.1) be independent of

the factorization scale µ through NNLO, b) the parton distribution functions fi satisfy the

DGLAP evolution equations, and, c) the known running of the strong coupling constant.

It is again natural to work in terms of the functions s(n(,m))
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The powers of 1/(2⇡) appearing in the above equations originate in the somewhat uncon-

ventional choice of ↵n
S as the expansion parameter in Eq. (2.4). The expansion of the splitting

functions is as in Eq. (4.3) where �

0

is also defined. The two-loop beta-function coe�cient

reads �
1

= 17C2

A/6� 5CANL/6� CFNL/2.

The scale dependence for any specific reaction can be easily derived from the above

equations. The expression for the qq̄ reaction has been given in Ref. [12]. The scale-dependent
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where the splitting function P

(1)

qq̃
is given in Eq. (4.6) and s

(n)
ij , n = 0, 1 are the finite LO and

NLO coe�cient functions available in analytical form [7].

We have computed all convolutions numerically and produced our own fits for all scaling

functions. We have implemented them in the program Top++ [48]: the ones for the complete

qq̄ reaction in version 1.2 and the ones for the qq, qq

0 and qq̄

0 reactions in version 1.3.

6 Results

We calculate the coe�cient functions �(2)

ij for the reactions (2.5,2.6,2.7,2.8) numerically in a

number of points on the interval � 2 (0, 1). For short, we will sometimes refer to the set
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•  To	  derive	  the	  case	  μF	  ≠	  μR	  we	  only	  need	  to	  subs@tute	  the	  running	  coupling	  discussed	  before.	  
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
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2
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2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux
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2
F ) =
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1� �

2
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✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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�
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2
�
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i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
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and s
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ij (⇢)/⇢, the MS–subtracted
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Collinear	  singulari@es.	  

•  Tops	  are	  massive.	  But	  due	  to	  emission	  of	  collinear	  radia@on	  from	  the	  massless	  	  
	  	  	  	  	  	  ini@al	  state	  partons	  (i,j)	  the	  resul@ng	  partonic	  cross-‐sec@ons	  are	  not	  finite.	  	  
•  For	  example,	  in	  dim	  reg,	  they	  contain	  a	  single	  pole	  per	  loop:	  

	  
•  This	  collinear	  singularity	  has	  to	  be	  factored	  out	  into	  the	  ini@al	  state	  PDF’s.	  	  

	  
	  
•  Through	  NNLO	  the	  collinear	  
	  	  	  	  	  	  counterterms	  read:	  
	  
•  They	  are	  process	  independent!	  
•  They	  are	  scheme	  dependent!	  
	  
	  
•  Note	  hat	  if	  we	  consider	  something	  like	  single	  inclusive	  top	  produc@on,	  then	  there	  will	  also	  
	  	  	  	  	  	  be	  collinear	  singulari@es	  in	  the	  final	  state.	  Top	  fragmenta@on	  func@ons	  might	  be	  needed	  if	  
	  	  	  	  	  	  the	  top	  PT	  become	  PT>>	  Mtop	  (never	  done	  so	  far,	  but	  might	  be	  needed	  for	  the	  LHC13)	  

The di↵erences �di↵

" are derived from pure interference 2 diagrams and vanish both at thresh-

old � = 0 and in the high-energy limit � = 1.

The subscript " appearing in Eqs. (3.1,3.2,3.3) emphasizes that these are bare cross-

sections, containing collinear singularities starting from 1/"2. To subtract these singularities

and obtain the finite partonic cross-sections �̂, one needs to perform collinear factorization,

which we describe next.

4 Collinear factorization

The description of the collinear factorization deserves some attention since for the reactions

considered in this paper it has not been spelled out in the literature. Moreover, the collinear

factorization for the reaction (2.5) represents a nonstandard contribution to the reaction

qq̄ ! tt̄ + X and, for consistency, was suppressed in Ref. [1]. We take the opportunity to

describe it in this work.

In the notation of Eq. (2.4), and setting µ = m, the bare partonic cross-sections read
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o
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They are defined in d = 4�2" dimensions and expressed in terms of the dimensionless variable

⇢ = 4m2

/s = 1 � �

2. To obtain the finite MS-subtracted partonic cross-sections �̂ij(⇢) one

has to factor out the initial state collinear singularities: 3
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⌦ �ki ⌦ �lj

�
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The MS collinear counterterms � are expressed through the space-like splitting functions

P

(n)
ij , defined as an expansion in (↵S/(2⇡))n. Through NNLO we have:
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,

with �

0

= 11CA/6�NL/3 and ↵S the renormalized coupling at scale µR.

2 By interference diagrams we mean squared diagrams where a final state parton connects not to itself but

to a di↵erent parton in the complex conjugate diagram. Clearly this is only possible if there are at least two

identical partons in the final state.
3We note a typo in Eq.(7) of Ref. [7], where � and �̂ have been exchanged. This typo does not a↵ect the

rest of Ref. [7].
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Calcula@on	  of	  the	  partonic	  cross-‐sec@ons:	  

No	  fully	  developed	  methods	  exist	  that	  can	  handle	  in	  unified	  way	  all	  aspects	  of	  	  
any	  massive	  calcula@on	  through	  NNLO.	  The	  working	  approach	  of	  today	  is:	  
	  
	  
•  Compute	  all	  pieces	  numerically,	  and	  separately,	  as	  IR	  divergent	  quan@@es.	  
•  Then	  add	  them	  up.	  
•  Make	  all	  checks,	  especially	  verify	  the	  cancella@on	  of	  all	  singulari@es	  	  
	  	  	  	  	  	  (a~er	  collinear	  factoriza@on)	  	  

As	  any	  NNLO	  calcula@on,	  there	  are	  3	  principle	  contribu@ons:	  



There	  are	  3	  principle	  contribu@ons:	  
	  
	  

ü 	  2-‐loop	  virtual	  correc@ons	  (V-‐V)	  	  
	  	  	  	  	  	  
	  

ü 	  1-‐loop	  virtual	  with	  one	  extra	  parton	  (R-‐V)	  

ü 	  2	  extra	  emiced	  partons	  at	  tree	  level	  (R-‐R)	  

And	  2	  secondary	  contribu@ons:	  
	  

ü 	  Collinear	  subtrac@on	  for	  the	  ini@al	  state	  
	  	  	  	  	  
ü 	  One-‐loop	  squared	  amplitudes	  (analy@c)	  

Korner,	  Merebashvili,	  Rogal	  `07	  
Anastasiou,	  Mert-‐Aybot	  `08	  

Known,	  in	  principle.	  Done	  numerically.	  

Top quark pair production at NNLO                                                 Alexander Mitov                                                                            Aachen, 6 June 2013 

Weinzierl	  `11	   May	  be	  avoided?	  



ü 	  A	  wonderful	  result	  By	  M.	  Czakon	  

	  
ü 	  The	  method	  is	  general	  (also	  to	  other	  processes,	  differen@al	  kinema@cs,	  etc).	  

ü 	  Explicit	  contribu@on	  to	  the	  total	  cross-‐sec@on	  given.	  

ü Used	  now	  in	  a	  number	  of	  NNLO	  processes:	  cbar,	  single	  top,	  Higgs+jet	  

Czakon	  `10-‐11	  

Top quark pair production at NNLO                                                 Alexander Mitov                                                                            Aachen, 6 June 2013 

26	  

Czakon,	  Fiedler,Mitov	  
Boughezal,	  Caola,	  Melnikov,	  Petriello,	  Schulze	  ’13	  
Brucherseifer,	  Caola,	  Melnikov	  ‘14	  

•  The	  single	  most	  important	  piece	  is	  how	  to	  handle	  the	  double-‐real	  contribu@ons	  
	  	  	  	  	  	  (i.e.	  to	  integrate	  over	  the	  phase	  space	  of	  the	  two	  unobserved	  partons)	  
	  
Recall:	  the	  matrix	  elements	  are	  tree-‐level	  (and	  thus	  finite)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  phase	  space	  integra@on	  is	  singular	  (so~	  and/or	  collinear	  logs)	  and	  produces	  terms	  ~1/ε4	  





•  This	  has	  been	  an	  extremely	  fer@le	  and	  useful	  field.	  	  
•  Helps	  in	  our	  understanding	  of	  QCD	  at	  higher	  orders	  and	  non-‐perturba@ve	  phenomena.	  	  
•  Very	  limited	  kinema@cal	  applicability:	  certain	  phase-‐space	  regions	  need	  it,	  most	  do	  not.	  

What	  is	  threshold?	  

•  Kinema@cal	  configura@on	  where	  all	  the	  partonic	  energy	  is	  taken	  by	  the	  top	  pair	  and	  very	  	  
	  	  	  	  	  	  licle,	  if	  any,	  energy	  is	  le~	  for	  radia@on.	  	  

•  Dis@nguish	  “absolute	  threshold”	  and	  “threshold”:	  

•  Absolute	  threshold	  is	  a	  par@cular	  case	  of	  a	  threshold,	  where	  almost	  all	  the	  partonic	  	  
	  	  	  	  	  	  energy	  is	  used	  to	  produce	  the	  tops	  at	  rest.	  

•  Absolute	  threshold	  kinema@cs	  is	  relevant	  for	  the	  resumma@on	  of	  the	  total	  x-‐sec@on.	  

•  General	  threshold	  resumma@on	  is	  needed	  for	  differen@al	  observables	  

•  The	  two	  types	  are	  related;	  absolute	  threshold	  resumma@on	  can	  be	  obtained	  from	  the	  	  
	  	  	  	  	  	  differen@al	  case	  by	  integra@ng	  over	  the	  phase	  space	  and	  then	  taking	  the	  limit	  βà0.	  

See	  Czakon,	  Mitov,	  Sterman	  ‘09	  for	  the	  detailed	  procedure	  



•  Important	  subtle	  point:	  if	  a	  resumma@on	  is	  done	  at	  the	  differen@al	  level,	  and	  then	  	  
	  	  	  	  	  	  numerically	  integrate	  over	  the	  phase	  space,	  the	  result	  will	  differ	  from	  the	  one	  done	  in	  	  
	  	  	  	  	  	  absolute	  threshold	  resumma@on	  due	  to	  subleading	  terms.	  In	  other	  words,	  the	  	  
	  	  	  	  	  	  leading	  terms	  in	  the	  threshold	  limit	  will	  be	  correctly	  resummed,	  but	  in	  one	  case	  subleading	  
	  	  	  	  	  	  terms	  would	  also	  come	  along.	  

•  This	  is	  a	  an	  important	  issue	  since	  these	  subleading	  terms	  are	  typically	  not	  small	  numerically	  
	  	  	  	  	  	  so	  their	  inclusion	  affects	  the	  results	  significantly.	  	  

•  This	  has	  led	  to	  many	  discussions	  in	  the	  past,	  some@mes	  quite	  animated;	  no	  consensus	  has	  	  
	  	  	  	  	  	  been	  reached	  in	  the	  literature.	  

•  The	  good	  news:	  with	  NNLO	  +	  resumma@on	  precision,	  the	  effects	  of	  the	  	  
	  	  	  	  	  	  resumma@on	  becomes	  less	  important,	  so	  these	  differences	  become	  more	  marginal.	  



•  Threshold	  resumma@on,	  in	  top	  or	  otherwise,	  has	  tradi@onally	  been	  done	  in	  the	  so-‐called	  	  
	  	  	  	  	  	  Mellin	  space	  approach	  (since	  mid-‐1990’s)	  

•  In	  the	  last	  5-‐6	  years	  SCET	  has	  also	  been	  extensively	  used	  for	  performing	  so~-‐gluon	  	  
	  	  	  	  	  	  resumma@on	  in	  top	  pair	  produc@on.	  	  

Kidonakis,	  Sterman	  
Bonciani,	  Catani,	  Mangano,	  Nason	  

Beneke,	  Falgari,	  Scwinn	  
Ferroglia,	  Neubert,	  Pecjak,	  Yang	  

There	  are	  many	  differences;	  almost	  all	  are	  technical.	  The	  essen@als	  are:	  

•  One	  of	  them	  works	  in	  N-‐space,	  the	  other	  in	  x-‐space.	  
•  To	  leading	  power	  both	  approaches	  agree;	  differences	  at	  subleading	  terms	  (could	  be	  large)	  
•  There	  is	  a	  belief	  (unclear	  if	  it	  is	  correct)	  that	  the	  x-‐space	  approach,	  unlike	  the	  N-‐space	  one,	  	  
	  	  	  	  	  	  allows	  MC	  implementa@on	  of	  resumma@on.	  The	  idea	  is	  to	  eventually	  have	  a	  fully	  differen@al	  
	  	  	  	  	  	  so~	  gluon	  resumma@on.	  

•  If	  this	  can	  be	  done,	  or	  not,	  is	  for	  the	  future	  to	  show.	  It	  is	  a	  nice	  open	  problem.	  
See	  recent	  work:	  Broggio,	  Papanastasiou,	  Signer	  ‘14	  



Here	  is	  how	  so~-‐gluon	  resumma@on	  is	  done	  (in	  the	  case	  of	  N-‐space)	  

ü  Iden@fy	  the	  threshold	  kinema@cs.	  Introduce	  a	  variable	  z,	  such	  that	  the	  threshold	  is	  zà1.	  
	  Examples:	  

•  	  total	  cross-‐sec@on: 	  	  
•  Differen@al	  case:	  	  

	  
ü  	  Introduce	  a	  dual	  Mellin	  variable	  (threshold	  is	  now	  the	  limit	  Nà∞).	  The	  leading	  power	  
	  	  	  	  	  	  	  	  behavior	  is	  simple:	  

ü  	  In	  the	  so~	  limit	  Nà∞	  the	  partonic	  cross-‐sec@on	  factorizes	  
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II. THRESHOLD RESUMMATION AT FIXED KINEMATICS

In this section, we review the threshold resummation formalism of Ref. [5], which is adapted to semi-inclusive
reactions characterized by fixed partonic scattering kinematics, as in for example,

f1(p1) + f2(p2) → fa(pa) + fb(pb) , (1)

where fi(pi) denotes a parton of flavor fi and momentum pi. We have shown a 2 → 2 process, but final states with
more than two particles are also possible, so long as all invariants pi · pj are large. The formalism we sketch in this
section applies to processes involving light quarks and gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
related point of view [4]. In Section III we will derive resummed inclusive cross sections for heavy quark production
from their semi-inclusive forms.

A. Factorization near partonic threshold

Our starting point for the resummation of observables involving initial and/or final state hadrons is the formalism
of Ref. [5]. To be specific, we restrict our discussion to the 2 → 2 processes of Eq. (1), although many of our
considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄

dM2dydη̂
=
∑

f

∫ 1

τ
dz

∫

dxa

xa

dxb

xb
φf/h1

(xa, µ2)φf̄/h2
(xb, µ

2)

× δ

(

z − τ

xaxb

)

δ

(

y − 1

2
ln

xa

xb

)

× ωff̄→QQ̄

(

z, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

, (2)

where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate
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momentum component of the soft radiation associated with a set of functions [9]. In threshold resummation for
hadronic collisions, this component is the energy, E∗

i , of each final-state particle in the center-of-mass frame of the
hard collision. That is, for any threshold resummation at hadronic collisions, we can identify

1 − z =
∑

particles i

2E∗
i√
s

, (5)

where the partonic variable s ≡ xaxbS equals M2 at threshold, with M the invariant mass of the observed pair of heavy
particles. The cross section then factorizes into simple products in the corresponding moment space. Dependence on
the moment variable enters only through the transform, and is therefore always in the form N/M , up to corrections
that decrease as powers of N .

As a result of this analysis, the partonic cross section takes a factorized form in moment space, which we can
represent as

ωP

(

N, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

= J1(N, αs(µ
2)) . . . Jk(N, M/µ, m/µ, αs(µ

2))

× Tr

[

H
P

(

M2

µ2
,
m2

µ2
, η̂, αs(µ

2)

)

S
P

(

N2µ2

M2
,
M2

m2
, η̂, αs(µ

2)

)]

+ O(1/N) , (6)

where the label P refers to a particular partonic process, for example qq̄ → tt̄, with q a light flavor. The Mellin
moment N is conjugate to the kinematical variable z. As shown, the various functions appearing in Eq. (6) depend
on other kinematical variables and masses as well as the factorization and renormalization scales. These functions
depend on the specific process. Below, we will give them more explicitly in the specific examples considered here. We
will refer to the factors Ji appearing in Eq. (6) as the jet functions for the underlying process. They are color diagonal
functions that describe the factorized dynamics of initial and/or final state hard partons, whether massive or massless,
and as such are independent of the details of the hard subprocess. Jet functions for initial-state partons absorb the
collinear subtractions necessary to define the hard scattering function ω in Eq. (6), so that they are infrared safe. Jet
functions for final-state partons are automatically infrared safe for the differential and inclusive cross sections that
we discuss here. The formalism can be extended as well to a variety of jet observables and to single-hadron cross
sections. The number k of such functions in Eq. (6) corresponds to the number of hard colored partons in the process
being considered.

The functions H and S appearing in Eq. (6) are known as hard and soft functions, respectively. They are both
matrices in the space of tensors that describe the exchange of color at short distances [5]. Examples for quark-
antiquark scattering are color singlet or octet in the s- or t-channel. We will denote these tensors in boldface, and
their product is traced over the combinations of color tensors in the amplitude and its complex conjugate. In the limit
N → ∞ the hard function H is free of logarithmic dependence on N ; it is obtained from a dedicated, process-specific
calculation.

B. Moment-dependence and the soft anomalous dimension matrix

The soft function S contains terms due to wide-angle soft emissions and thus contributes a single power of ln(N)
per loop. It is also process dependent, and in the general case is dependent on the four-velocities {βi} of the partons
that take part in the hard scattering. For processes involving four or more colored hard partons it is a matrix in
the space of color tensors. Assuming fixed-angle scattering, the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we will take to be M , the invariant mass of the pair for the
case of heavy quark production. For a massive quark of velocity βq, we shall set β2

q = m2
q/M

2, and for most of this
discussion, treat this ratio as a number of order unity.

As noted above, all N -dependence is of the form N/M . As a result, in the dimensionless soft function, N -dependence
appears only in the combination M/(Nµ). In Ref. [5], it was shown that the N -dependence of the soft function
S(N, . . . ) entering the cross section Eq. (6) can be made explicit in terms of a “soft anomalous dimension matrix”,
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B. Moment-dependence and the soft anomalous dimension matrix

The soft function S contains terms due to wide-angle soft emissions and thus contributes a single power of ln(N)
per loop. It is also process dependent, and in the general case is dependent on the four-velocities {βi} of the partons
that take part in the hard scattering. For processes involving four or more colored hard partons it is a matrix in
the space of color tensors. Assuming fixed-angle scattering, the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we will take to be M , the invariant mass of the pair for the
case of heavy quark production. For a massive quark of velocity βq, we shall set β2

q = m2
q/M

2, and for most of this
discussion, treat this ratio as a number of order unity.

As noted above, all N -dependence is of the form N/M . As a result, in the dimensionless soft function, N -dependence
appears only in the combination M/(Nµ). In Ref. [5], it was shown that the N -dependence of the soft function
S(N, . . . ) entering the cross section Eq. (6) can be made explicit in terms of a “soft anomalous dimension matrix”,

•  The	  leading	  power	  behavior	  close	  to	  threshold	  can	  now	  be	  made	  explicit	  to	  all	  orders	  in	  
	  	  	  	  	  	  the	  coupling.	  This	  is	  why	  the	  so~	  resumma@on	  is	  needed	  in	  the	  first	  place:	  to	  resum	  terms	  like	  
	  
	  
	  	  	  	  	  	  and	  restore	  the	  convergence	  of	  perturba@on	  theory	  close	  to	  the	  partonic	  threshold!	  

αS
n	  à	  αS

n	  Logk(N)	  >>	  αS
n	  	  

•  The	  all-‐order	  (in	  αS)	  behavior	  of	  the	  above	  func@ons	  (Ji	  and	  S;	  H	  is	  a	  constant)	  is	  derived	  	  
	  	  	  	  	  	  by	  solving	  their	  evolu@on	  equa@ons.	  
•  The	  evolu@on	  equa@ons	  are	  driven	  by	  anomalous	  dimensions	  that	  can	  be	  computed	  in	  	  
	  	  	  	  	  	  fixed	  order	  perturba@on	  theory.	  The	  deeper	  the	  expansion,	  the	  higher	  the	  logarithmic	  	  
	  	  	  	  	  	  accuracy	  of	  the	  resumma@on.	  
•  Nowadays,	  NNLL	  “comes	  standard”.	  	  
•  Note:	  same	  story	  in	  x-‐space:	  same	  factoriza@on	  (looks	  more	  complicated	  there)	  same	  	  
	  	  	  	  	  	  evolu@on	  equa@ons.	  Same	  physics.	  
	  
•  One	  possible	  difference	  between	  the	  N-‐	  and	  x-‐space	  approaches:	  subleading	  terms	  have	  
	  	  	  	  	  	  becer	  behavior	  in	  N-‐space	  (lack	  of	  factorial	  growth).	  See	  	  

Catani,	  Mangano,	  Nason,	  Trentadue	  ‘96	  



•  The	  Jet	  func@ons	  are	  process	  independent	  
•  The	  hard	  func@on	  is	  derived	  from	  FO	  process	  dependent	  calcula@on.	  Numerically	  important.	  
•  The	  so~	  func@on	  is	  complicated	  but	  now	  known	  to	  two	  loops	  (NNLL)	  in	  massive	  case:	  

•  All	  the	  N-‐dependence	  is	  now	  explicit,	  to	  all	  orders	  in	  the	  coupling!	  

	  
•  The	  needed	  anomalous	  dimensions	  all	  come	  from	  the	  IR	  singulari@es	  of	  the	  corresponding	  
	  	  	  	  	  	  amplitudes.	  There	  is	  a	  very	  deep	  connec@on	  between	  the	  IR	  behavior	  of	  gauge	  theory	  	  
	  	  	  	  	  	  amplitudes	  and	  so~	  gluon	  resumma@on	  in	  the	  corresponding	  cross-‐sec@ons.	  

4

ΓS . Making the natural choice, µ = M , we have

S

(

N2µ2

M2
, βi · βj , αs(µ

2)

)

∣

∣

∣

∣

∣

µ=M

= P exp

{

−
∫ M

M/N̄

dµ′

µ′
Γ
†
S

(

βi · βj , αs

(

µ′2
))

}

×S
(

1, βi · βj , αs

(

M2/N̄2
))

×P exp

{

−
∫ M

M/N̄

dµ′

µ′
ΓS

(

βi · βj , αs

(

µ′2
))

}

= P exp

{

∫ 1

0
dx

xN−1 − 1

1 − x
Γ
†
S

(

βi · βj , αs

(

(1 − x)2M2
))

}

×S
(

1, βi · βj , αs

(

M2/N2
))

×P exp

{

∫ 1

0
dx

xN−1 − 1

1 − x
ΓS

(

βi · βj , αs

(

(1 − x)2M2
))

}

, (7)

where the second expression is accurate to next-to-next-to leading logarithms (i.e. terms ∼ αn
s lnn−1 N in the cross

section) for N̄ = NeγE , with γE the Euler constant. Throughout this paper αs = αs(µ2) is the standard MS coupling
evolving with NL light flavors. Decoupling of the heavy flavor will simplify our results significantly. The relation
between the bare αb

s and renormalized couplings reads

αb
sSϵ = αs(µ

2)

[

1 − β0

4ϵ

αs(µ2)

π
+ O(α2

s)

]

, (8)

where Sϵ = (4π)ϵ exp(−ϵγE) and β0 = (11/3)CA − (4/3)TF NL. The color factors in an SU(N)-gauge theory are
CA = N , CF = (N2 − 1)/(2N) and TF = 1/2.

The structure of Eq. (7) follows from the renormalization group equation satisfied by the soft function
S(N2µ2/M2, . . . ), where ΓS plays the role of a matrix of anomalous dimensions [5]. The function S(1, . . . ) plays
the role of a boundary condition, which is chosen to be the soft function at unit N , that is, with unit weight. In
general, this factor contributes a single ln(N) starting from two loops, which is due, however, entirely to the presence
of N in the scale of the running coupling in its one-loop expression. To determine this contribution one need only
calculate the soft function in Eq. (6) through one loop.

At N = 1, the computation of the soft function is given by a total eikonal cross section, subtracted for eikonal
jet functions to eliminate collinear enhancements [5]. In the formalism of Ref. [5], virtual corrections are pure
counterterms, because the corresponding eikonal diagrams are scaleless and vanish in dimensional regularization. In
the full soft function, however, the hard scale sets a maximum total energy for the soft function at N = 1, and
the corresponding integrals are not scaleless. Their infrared poles are cancelled by the virtual diagrams, but finite
corrections may remain.

In summary, the soft function S at N = 1 takes the form

S
(

1, βi · βj , αs

(

M2/N2
))

= S
(0) +

αs

(

M2/N2
)

π
S

(1) (1, βi · βj) + . . . , (9)

where S(0) is a constant diagonal matrix independent of the coupling and S(1) (1, βi · βj) is free of dependence on N ,
but can depend on the eikonal velocities that define the soft function. Explicit expressions for S(0) relevant to heavy
quark production can be found in [10]. We will give the one-loop correction below, after specifying a scheme that
defines the soft function unambiguously. At this stage, we note that to compute the soft function fully at next-to-
next to leading logarithm it is necessary to compute the two-loop anomalous dimension matrix and the one-loop soft
function.

C. The form factor scheme

The soft function is not unique, but is ambiguous at the level of single logarithmic contributions that can be
absorbed into the jet functions. These ambiguities, must be proportional to the unit matrix in the color exchange
space (since the jet functions are diagonal in color). To resolve this ambiguity one has to specify a prescription for
the definition of the anomalous dimension matrix ΓS , which we discuss next.



•  Imagine	  we	  do	  not	  know	  the	  NNLO	  result	  for	  top	  pair	  produc@on	  
•  From	  the	  resummed	  result,	  once	  it	  is	  expanded	  in	  powers	  of	  the	  strong	  coupling,	  one	  can	  	  
	  	  	  	  	  	  predict	  the	  leading	  power	  threshold	  behavior	  of	  the	  cross-‐sec@on!	  
	  
•  This	  has	  been	  done	  analy@cally	  for	  the	  total	  cross-‐sec@on	  as	  well	  as	  implemented	  in	  	  
	  	  	  	  	  	  numerical	  programs	  for	  the	  differen@al	  cross-‐sec@on.	  	  
	  
•  The	  result	  for	  the	  total	  cross-‐sec@on	  reads:	  

Figure 2: Example graphs with contributions from both the ultrasoft (gluons depicted with wavy lines) and potential
(gluons depicted with dashed lines) regions. The crosses denote effective interactions, the structure of which is
irrelevant to the argument of the text.

denominator containing a combination of a potential and an ultrasoft momentum, the ultrasoft
momentum will be (multipole) expanded. Therefore, the denominators containing potential three-
momenta will not depend on the direction of any external three-momentum (unlike denominators
containing an ultrasoft three-momentum). In consequence, rotational invariance implies that all
integrals with an odd number of potential three-momenta in the numerator vanish. Thus, given
a term with a specified power of β, the next higher-order contribution will be suppressed by a
relative factor of β2, smaller than the terms we seek.

Next, regarding the subleading soft-gluon couplings to the initial state, the relevant expan-
sion is one in transverse momentum. The effective Lagrangian for the corrections to the eikonal
approximation is given in soft-collinear effective theory by ξ̄

(

xµ
⊥nν

− Wc gF us
µνW †

c

) n̸+

2 ξ for quarks
[32, 33], and similar terms involving transverse derivatives or factors of x⊥ for the couplings to
collinear gluons, and of soft quarks. None of these terms can contribute a beta-suppressed term,
since the initial-state momenta in Fig. 2 can always be chosen to have zero transverse momen-
tum, implying that loop integrals with transverse-momentum factors in the numerator vanish by
arguments similar to those applied to the heavy-quark couplings. This completes the proof, that
we have correctly taken into account all possible sources of singular terms in the expansion of the
cross sections for heavy-quark pair production at NNLO by including the extra terms from the
non-Coulomb potentials.

Note that some of the cuts of Fig. 2 correspond to three-particle colour correlations at the
amplitude level, for which the infrared divergence structure has recently been given in Ref. [13].
The latter work shows that the infrared-singular three-particle correlations may not vanish in
the limit β → 0 in the amplitude, but that they do in the virtual contributions to the total
cross section at NNLO in the particular case of top quarks because of colour projections [12, 13].
Our arguments above prove that there are no contributions to the lnβ terms from three-particle
correlations in both, the virtual and real corrections. This holds independent of particular colour
representations for purely kinematic reasons.

3. Results

Next we present the main result of this paper, namely the expansion of the two-loop partonic cross
section close to the partonic threshold β = 0. As we emphasized above, our result is complete up to

the so-called constant terms2 C(2)
qq̄ , C(2)

gg,1, C(2)
gg,8. Their derivation requires a dedicated calculation

that goes beyond the scope of the present work. Setting µR = µF = µ, the result for the total
cross-section close to threshold reads:

σij,I(β, µ, m) = σ(0)
ij,I

{

1 +
αs(µ2)

4π

[

σ(1,0)
ij,I + σ(1,1)

ij,I ln

(

µ2

m2

)]

(4)

+

(

αs(µ2)

4π

)2 [

σ(2,0)
ij,I + σ(2,1)

ij,I ln

(

µ2

m2

)

+ σ(2,2)
ij,I ln2

(

µ2

m2

)]

+ O(α3
s)

}

,

2This standard terminology is somewhat misleading in this process. Due to the non-trivial β dependence of the
Born cross section, the contribution of the “constant” term to the cross section is, in fact, proportional to β.
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colour-state specific components given above, one has to first multiply the two-loop contributions

Eqs. (5,7) and (6) by, respectively, σ(0)
ij,8 and σ(0)

ij,1 (see Eq. (4)), and then add them together. The
singlet/octet Born terms can be found in Appendix B. Finally, by setting µ = m, all colour factors
to their numerical values, and nl = 5 as applicable to top-quark production, we get the following
result for the colour-averaged total inclusive cross-section close to partonic threshold:

σ(2)
qq̄ =

3.60774

β2
+

1

β

(

− 140.368 ln2 β + 32.106 lnβ + 3.95105
)

+910.222 ln4 β − 1315.53 ln3 β + 592.292 ln2 β + 528.557 lnβ + C(2)
qq ,

σ(2)
gg =

68.5471

β2
+

1

β

(

496.3 ln2 β + 321.137 lnβ − 8.62261
)

+4608 ln4 β − 1894.91 ln3 β − 912.349 ln2 β + 2456.74 lnβ + C(2)
gg , (8)

which differs in the coefficients of the 1/β and lnβ terms from the expressions given in [23] for
the reasons mentioned in section 2.

In conclusion, the above formulae contain all velocity-enhanced terms in the total hadronic pro-
duction of heavy quarks at NNLO near the partonic threshold. A compact general result for the
velocity-enhanced terms in the production of equal-mass heavy-particle pairs in the collisions of
massless particles for arbitrary colour representations is provided in appendix A.
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Appendix A. A formula for arbitrary representations

Here we provide the velocity-enhanced terms at NNLO for the production of a pair of heavy
particles with equal mass m in the scattering of massless partons in colour representations r
and r′, respectively, under the assumption that the Born cross section (which is factored out
as in Eq. (4)) admits an S-wave term proportional to β. The heavy-particle pair is in colour
representation Rα and a definite spin state. The threshold expansion reads

σ(2)
X =

4π4D2
Rα

3β2
+

π2DRα

β

{

(−8) (Cr + Cr′)

[

ln2

(

2mβ2

µ

)

−
π2

8

]

+ 2 (β0 + 4CRα
) ln

(

2mβ2

µ

)

− 8CRα
− 2a1 − 4 Re [C(1)

X ] + 2β0 ln

(

2m

µ

) }

+ 128 (Cr + Cr′)2 ln4 β + 64 (Cr + Cr′)

{

4 (Cr + Cr′) (L8 − 2) −
β0

3
− 2CRα

}

ln3 β

+

{

8

3
(Cr + Cr′)2

[

72L2
8 − 288L8 + 576 − 35π2

]

+
16

9
(Cr + Cr′)

[

18 Re [C(1)
X ]

+ 18β0 (−L8 + 2) + 36CRα
(−3L8 + 7) + CA(67 − 3π2) − 20nlTf

]

+ 16CRα
(β0 + 2CRα

)

}

ln2 β

+

{

8 (Cr + Cr′)2
[

8L3
8 − 48L2

8 +

(

192 −
35π2

3

)

L8 − 384 +
70π2

3
+ 112ζ3

]
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where:	  

where I = 1,8 is a colour index and ij = (qq̄, gg), whereas αs(µ2) is defined in the MS scheme
with nl (number of massless quarks) flavours. The derivation of the coefficients of lnn(µ2/m2)
with n = 1, 2 from one-loop results and splitting functions is given in Appendix B. The non-trivial

scale-independent two-loop contributions σ(2,0)
ij,I read:

σ(2,0)
qq̄,8 =

(2CF − CA)2π4

3β2
+

(2CF − CA)π2

9β

[

288CF ln2 β + 6
(

48CF ln 2 − 23CA + 2nl

)

lnβ

+12CF

(

− 24 + 9 ln 2 + π2
)

+ 3CA

(

89 − 58 ln2 − 3π2
)

+ 6nl

(

− 5 + 6 ln 2
)

− 32
]

+512C2
F ln4 β +

128

9
CF

[

72CF

(

− 2 + 3 ln 2
)

− 29CA + 2nl

]

ln3 β

+
16

9

[

2CF

(

12CF (120 − 207 ln 2 + 156 ln2 2 − 7π2) + 3CA(217 − 198 ln 2 − 4π2)

+6nl(−9 + 10 ln 2) − 32
)

+ 3CA(17CA − 2nl)
]

ln2 β

+
8

27

[

2CF

(

18CF (−960 + ln 2(1368− 84π2) − 1140 ln2 2 + 576 ln3 2 + 55π2 + 336ζ3)

+CA(−7582 + 108 ln2(115 − 2π2) − 5886 ln2 2 + 360π2 + 189ζ3)

+2nl(338 − 630 ln 2 + 378 ln2 2 − 9π2) + 192(2 − 3 ln 2)
)

+3CA

(

3CA(−185 + 126 ln2 + 6π2 − 6ζ3) + 6nl(11 − 10 ln 2) + 32
)

]

lnβ + C(2)
qq̄ , (5)

σ(2,0)
gg,1 =

4C2
F π4

3β2
+

2CF π2

9β

[

288CA ln2 β + 6
(

CA(−11 + 48 ln 2) + 2nl

)

lnβ

+9CF

(

− 20 + π2
)

+ CA

(

67 − 66 ln 2 + 3π2
)

+ 2nl

(

− 5 + 6 ln 2
)

]

+ 512C2
A ln4 β

+
128

9
CA

[

CA

(

− 155 + 216 ln2
)

+ 2nl

]

ln3 β +
32

9
CA

[

9CF

(

− 20 + π2
)

+CA

(

1963− 2790 ln2 + 1872 ln2 2 − 96π2
)

+ 2nl

(

− 17 + 18 ln 2
)

]

ln2 β

+
16

27

[

27CF

(

− 2CF π2 + CA(80 + 6 ln 2(−20 + π2) − 5π2)
)

+ CA

(

CA(−23758

+18 ln2(1963− 96π2) − 24246 ln2 2 + 10368 ln3 2 + 1251π2 + 6237ζ3)

+2nl(218 − 306 ln 2 + 162 ln2 2 − 9π2)
)

]

lnβ + C(2)
gg,1 , (6)

σ(2,0)
gg,8 =

(2CF − CA)2π4

3β2
+

(2CF − CA)π2

18β

[

576CA ln2 β + 12
(

CA(−23 + 48 ln 2) + 2nl

)

lnβ

+18CF

(

− 20 + π2
)

+ CA

(

278 − 132 ln 2 − 3π2
)

+ 4nl

(

− 5 + 6 ln 2
)

]

+ 512C2
A ln4 β

+
128

9
CA

[

CA

(

− 173 + 216 ln2
)

+ 2nl

]

ln3 β +
16

9
CA

[

18CF

(

− 20 + π2
)

+CA

(

4553− 6156 ln2 + 3744 ln2 2 − 201π2
)

+ 2nl

(

− 37 + 36 ln2
)

]

ln2 β

+
4

27

[

54CF

(

− 4CF π2 + CA(180 + 12 ln 2(−20 + π2) − 7π2)
)

+ CA

(

CA(−111418

+36 ln2(4499− 201π2) − 105624 ln2 2 + 41472 ln3 2 + 5823π2 + 24840ζ3)

+4nl(505 − 666 ln 2 + 324 ln2 2 − 18π2)
)

]

lnβ + C(2)
gg,8 . (7)

In order to construct the two-loop correction to the colour-averaged cross section from the

5

The	  analy@c	  result:	  



•  Replacing	  the	  (unknown)	  exact	  NNLO	  result	  with	  its	  so~	  approxima@on	  (prev.	  page)	  became	  
	  	  	  	  	  	  known	  as	  NNLOapprox	  approaches.	  

Warning:	  the	  reliability	  of	  such	  approaches	  in	  approxima@ng	  the	  full	  result	  is	  ques@onable.	  
Comparisons	  with	  exact	  results	  show	  that	  subleading	  terms	  could	  indeed	  be	  numerically	  large.	  

•  Another	  subtlety:	  in	  top	  produc@on,	  there	  is	  another	  effect	  that	  lives	  close	  to	  threshold	  	  
	  	  	  	  	  	  (i.e.	  same	  kinema@cs,	  different	  physics):	  bound	  state	  forma@on.	  
	  
•  These	  produce	  addi@onal	  power	  singulari@es	  in	  the	  threshold	  region	  (i.e.	  so~	  resumma@on	  
	  	  	  	  	  	  leads	  to	  Logn[β]	  terms,	  while	  Coulombic	  interac@ons	  lead	  mostly	  to	  1/βn	  terms.	  
•  Interes@ngly,	  the	  numerical	  impact	  of	  these	  addi@onal(and	  stronger)	  singulari@es	  is	  small.	  
	  	  	  	  	  	  we	  need	  to	  be	  very	  close	  to	  threshold	  to	  no@ce	  their	  effect	  (which	  is	  very	  rare).	  





Convergence	  of	  perturba@on	  theory:	  excellent	  for	  the	  total	  x-‐sec@on	  through	  NNLO	  
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Fig. 1. – Scale dependence of the total cross-section at LO (blue), NLO (red) and NNLO
(black) as a function of mtop at the Tevatron (left) and the LHC 8 TeV (right). No soft
gluon resummation is included. For reference the most precise experimental measurements are
also shown.

In fig. 1 (left) we show the scale dependence of the predicted cross-section at the
Tevatron, as a function of the top quark mass. We note the significant and consistent
improvement in the theoretical precision due to inclusion of corrections at higher per-
turbative orders. We also note the agreement between the theoretical prediction (3) and
the latest Tevatron measurement [13].

Next we turn to the LHC. In fig. 1 (right) we show the scale dependence of the
predicted cross-section at the LHC 8 TeV as a function of mtop. Similarly to the case
of the Tevatron, we observe a very good perturbative convergence of the theoretical
prediction and good agreement with the available measurement [14].

In fig. 2 (left) we show the scale dependence of the predicted cross-section at the LHC
as a function of the collider energy. We note that the perturbative convergence observed
at 8 TeV is consistently present in the whole range of relevant LHC energies. Moreover,
the good agreement of the NNLO theoretical prediction with the available data persists
at all energies where data is currently available [15-17].

Next we study the impact of soft-gluon resummation on the size of the scale depen-
dence and the central value of the theoretical prediction. In fig. 2 (right) we show the
scale dependence of the predicted cross-section at the LHC 8 TeV for a number of cases
with different fixed order and logarithmic accuracy: LO, NLO, NLO+LL, NLO+NLL,
NLO+NNLL, NNLO, NNLO+LL, NNLO+NLL and NNLO+NNLL. In all cases we fol-
low the resummation procedure of Ref. [18]. We set the constant A = 0 (introduced in
Ref. [19]), mtop = 173.3 GeV and set the accuracy of the pdf according to the accuracy
of the fixed order result.

We observe that the excellent convergence of the perturbative expansion is preserved
after the inclusion of soft gluon resummation. In particular, the feature that resummation
shifts the fixed order cross-section up by about 2-3% is consistently present at NLO and
NNLO and does not seem to significantly depend on the logarithmic accuracy of the

(3) Recall that only the scale dependence is shown. The full theoretical uncertainty is, roughly,
about twice as large as the scale dependence.
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resummation. Inclusion of resummation with logarithmic accuracy at NLL or NNLL
also noticeably decreases the scale dependence of the theoretical prediction, as expected.
The absolute size of the resulting reduction in scale dependence is also at the 2% level.

An alternative way of assessing the impact of soft-gluon resummation is shown in
fig. 3 (which updates fig. 1 of Ref. [18] by including the exact NNLO result). Plotted
is the relative error of the cross-section at the LHC as a function of the collider energy.
We consider a broad range of energies, starting from slightly above the tt̄ production
threshold and going up to 45 TeV which is far above threshold. In all cases we observe
that the inclusion of soft gluon resummation extends the validity of the perturbative
prediction closer to threshold. For large collider energies the enhanced tt̄ threshold
contribution gets reduced and, indeed, we observe that the resummed and unresummed
predictions converge to each other in this case. We also notice that the difference between
NLL and NNLL is small and is more pronounced when added on top of the NLO result
(as anticipated). Finally we note that the inclusion of soft-gluon resummation on top
of the NNLO result makes the relative scale uncertainty practically independent of the
collider energy, except of course for the immediate threshold region which, a posteriori,
is another justification for the use of soft-gluon resummation.

5. – Application to searches for physics beyond the Standard Model

In addition to being a powerful tool for testing the Standard Model, the high precision
of the total inclusive tt̄ production cross-section presents an opportunity for devising new
strategies for searches of physics beyond the Standard Model. A first exploration of the
improvements in BSM searches arising from NNLO top data was presented in Ref. [9],
where it was shown that the use of top quark data in a NNLO global PDF fit leads to
an improved determination of the poorly known large-x gluon PDF. This improvement
then translates into more accurate predictions for BSM heavy particle production and
for the large mass tail of the Mtt distribution, the latter used in searches of new heavy
resonances which decay into top quarks.

While the above examples illustrate the indirect improvement in BSM searches due
to top quark data, high-precision top production can also impact BSM studies directly,



•  The	  best	  proof	  the	  so~	  gluon	  resumma@on	  macers	  exactly	  where	  it	  is	  needed:	  

6 M. CZAKON, P. FIEDLER, A. MITOV AND J. ROJO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

(σ
m

a
x 

- 
σ

m
in

)/
σ

ce
n
tr

√s [TeV]

NLO
NLO+NLL

NLO+NNLL
NNLO

NNLO+NLL
NNLO+NNLL

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  5  10  15  20  25  30  35  40  45

(σ
m

a
x 

- 
σ

m
in

)/
σ

ce
n
tr

√s [TeV]

NLO
NLO+NLL

NLO+NNLL
NNLO

NNLO+NLL
NNLO+NNLL

Fig. 3. – The relative scale uncertainty of the tt̄ cross-section, computed as a function of the
LHC collider energy at fixed order (NLO and NNLO) and including with soft-gluon resummation
(NLL and NNLL).

for example, in the search for supersymmetric top partners - the stops. The basic idea
is rather simple [20]: in searches for stops with mass that is only slightly above the top
mass, the stops decay to either a pair of top quarks or to the decay products of the top
quark. Either way, the conventional stop searches require separation of the stop signal
from the very similar and much larger top background. The ratio of the stop over top
cross-sections is shown in fig. 4 (left) for LHC 8 and 14 TeV. The computation of the
top cross-section is done at NNLO+NNLL with the program Top++ (2.0) [7], while
the stop cross-section is computed at NLO with the program Prospino(2.1) [21], using
consistently MSTW2008 in both programs. For a stop mass equal to the top mass the
ratio of cross sections is about 15%, decreasing quickly as the stop mass increases.

In fig. 4 (right) we show the “double” ratio R14/8(top + stop)/R14/8(top), where
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•  Resummed	  results	  becer	  behaving	  closer	  to	  threshold;	  Fixed	  Order	  perturba@on	  theory	  
	  	  	  	  	  	  starts	  to	  fail	  close	  to	  threshold	  (as	  it	  should)	  



•  A	  note	  on	  scale	  varia@on:	  

•  To	  es@mate	  the	  error	  from	  missing	  higher-‐order	  terms	  we	  use	  the	  size	  of	  scale	  varia@on.	  

•  This	  can	  be	  done	  in	  a	  number	  of	  ways,	  and	  it	  does	  make	  a	  difference:	  

•  μF	  =	  μR	  and	  the	  two	  are	  varied	  together	  

•  μF	  =/=	  μR	  and	  the	  two	  are	  varied	  independently,	  but	  restricted	  to	  their	  ra@o	  in	  (0.5	  ,	  2)	  

•  The	  difference	  is	  yet	  higher	  order	  terms	  and	  the	  two	  approaches	  are	  formally	  equivalent	  
•  Yet	  it	  is	  no@ced	  than	  the	  second	  yields	  much	  larger	  varia@on	  	  (could	  be	  up	  to	  a	  factor	  of	  3)	  

•  The	  previous	  plots	  demonstrates	  that	  he	  second	  approach	  produces	  scale	  varia@on	  which	  	  
	  	  	  	  	  	  could	  be	  interpreted	  as	  due	  to	  missing	  higher	  order	  terms.	  



Effect	  of	  running	  scales:	  
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Figure 8: Transverse-momentum distribution of the positron with standard cuts for the
LHC at

√
s = 8TeV for fixed scale µ0 = mt/2.
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Figure 9: Transverse-momentum distribution of the top quark with standard cuts for the
LHC at

√
s = 8TeV for fixed scale µ0 = mt/2.
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Figure 10: Transverse-momentum distribution of the positron with standard cuts for the
LHC at

√
s = 8TeV for dynamical scale µ0 = ET/2.
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Figure 11: Transverse-momentum distribution of the top quark with standard cuts for
the LHC at

√
s = 8TeV for dynamical scale µ0 = ET/2.
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Figure 9: Normalised differential tt production cross section in the `+jets channels as a func-
tion of the pt

T (top left) and yt (top right) of the top quarks, and the ptt
T (middle left), ytt (middle

right), and mtt (bottom) of the top-quark pairs. The superscript ‘t’ refers to both top quarks and
antiquarks. The inner (outer) error bars indicate the statistical (combined statistical and system-
atic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG,
and MC@NLO, and to NLO+NNLL [15] and approximate NNLO [16, 17] calculations, when
available. The MADGRAPH prediction is shown both as a curve and as a binned histogram.

Top	  differen@al	  spectra	  (LHC	  7	  TeV,	  CMS)	  

Interes@ng	  discrepancy;	  is	  it	  from	  higher	  order	  terms;	  or	  top	  reconstruc@on?	  


