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•  Audience	
  with	
  diverse	
  interests	
  (QCD/SM,	
  bSM):	
  discussion	
  should	
  be	
  useful	
  for	
  both	
  
•  Times	
  are	
  changing:	
  

•  It	
  was	
  only	
  few	
  years	
  ago	
  when	
  we	
  were	
  thinking	
  of	
  physics	
  at	
  the	
  Born	
  level	
  	
  
	
  	
  	
  	
  	
  	
  focusing	
  almost	
  exclusively	
  on	
  the	
  ideas	
  …	
  

•  Such	
  a	
  way	
  of	
  thinking	
  of	
  physics	
  is	
  not	
  adequate	
  any	
  more:	
  
•  LHC	
  Run	
  I	
  showed	
  an	
  impressive	
  level	
  of	
  agreement	
  with	
  SM	
  (above)	
  
•  Will	
  try	
  to	
  emphasize	
  the	
  important	
  issues	
  from	
  modern	
  prospec@ve	
  

Modern	
  =	
  today,	
  not	
  last	
  year	
  …	
  



ü  The	
  SM	
  prospec@ve	
  
•  Top	
  produc@on	
  is	
  the	
  most	
  complex	
  SM	
  process:	
  tame	
  c,	
  tame	
  the	
  SM	
  (needed	
  for	
  bSM)	
  

	
  -­‐	
  massive:	
  addi@on	
  of	
  a	
  mass	
  in	
  a	
  problem	
  adds	
  a	
  dimension	
  to	
  its	
  complexity	
  
	
  -­‐	
  colored	
  
	
  -­‐	
  large	
  QCD	
  correc@ons	
  
	
  -­‐	
  important	
  EW	
  interac@ons	
  (strongly	
  interacts	
  with	
  all	
  SM	
  par@cles)	
  
	
  -­‐	
  results	
  in	
  very	
  complex	
  final	
  states	
  

•  Top	
  can	
  be	
  studied	
  perturba@vely:	
  (record-­‐)	
  high	
  accuracy	
  expected	
  (both	
  TH	
  and	
  EXP)	
  
•  The	
  only	
  bare	
  quark:	
  gives	
  direct	
  access	
  to	
  the	
  SM	
  Lagrangian	
  (with	
  caveats,	
  of	
  course)	
  

	
  
ü  The	
  bSM	
  prospec@ve	
  

•  Top	
  is	
  a	
  major	
  background	
  for	
  many	
  (most?)	
  bSM	
  processes:	
  search	
  for	
  bSM	
  “beneath”	
  top	
  
•  The	
  most	
  prominent	
  current	
  discrepancy	
  w/r	
  to	
  SM:	
  Tevatron	
  top	
  AFB	
  
•  Decays	
  to	
  tops;	
  top	
  loop	
  effects	
  
•  Very	
  large	
  coupling	
  to	
  Higgs:	
  if	
  anything	
  in	
  the	
  SM	
  macers	
  for	
  Higgs,	
  this	
  is	
  top.	
  
•  In	
  summary,	
  top	
  macers	
  in	
  2	
  ways:	
  

	
  -­‐	
  through	
  its	
  parametric	
  values	
  (e.g.	
  Mtop	
  and	
  EW	
  vacuum	
  stability)	
  
	
  -­‐	
  directly	
  (through	
  its	
  produc@on	
  rates)	
  





•  Is	
  the	
  top	
  special	
  (as	
  we	
  hear	
  all	
  the	
  @me?):	
  it	
  depends!	
  
•  From	
  the	
  viewpoint	
  of	
  QCD:	
  NO	
  
•  From	
  the	
  viewpoint	
  EW	
  :	
  YES	
  

•  Top	
  gets	
  most	
  of	
  its	
  correc@ons	
  –	
  and	
  produc@on	
  rates	
  –	
  from	
  QCD	
  effects.	
  But	
  it	
  gets	
  	
  
	
  	
  	
  	
  	
  	
  its	
  proper@es	
  from	
  EW	
  interac@ons.	
  ==>	
  both	
  are	
  very	
  important.	
  

•  Top’s	
  main	
  acribute:	
  its	
  very	
  large	
  mass:	
  Mtop	
  ≈	
  173	
  GeV	
  .	
  Compare:	
  
	
   	
  *	
  MH	
  ≈	
  125	
  GeV	
  
	
   	
  *	
  MW	
  ≈	
  80	
  GeV	
  
	
   	
  *	
  Mb	
  ≈	
  5	
  GeV	
  
	
   	
  *	
  Mc	
  ≈	
  1.5	
  GeV	
  

Understanding	
  the	
  origin	
  of	
  mass	
  is	
  a	
  major	
  open	
  problem	
  

•  CKM	
  elements	
  relevant	
  for	
  top:	
  Vtb	
  ≈	
  1.	
  	
  
•  Top	
  coupling	
  to	
  non-­‐b	
  down-­‐type	
  quarks	
  must	
  be	
  very	
  small	
  (CKM	
  suppression)	
  
•  Top	
  couplings	
  to	
  other	
  up-­‐type	
  quarks	
  is	
  non-­‐zero	
  at	
  loop-­‐level	
  but	
  @ny.	
  	
  

Any	
  significant	
  top	
  coupling	
  to	
  non-­‐b	
  quarks	
  might	
  be	
  a	
  sign	
  of	
  bSM	
  physics	
  



Top’s	
  very	
  large	
  mass*	
  dictates	
  its	
  proper@es	
  (both	
  intrinsic	
  and	
  produc@on	
  ones)	
  

*	
  To	
  be	
  elaborated	
  upon	
  later.	
  

•  Mtop	
  >>	
  MW	
  	
  
	
  	
  	
  	
  	
  	
  Implica@on:	
  top	
  readily	
  decays;	
  not	
  true	
  for	
  the	
  other	
  quarks.	
  
•  Γtop	
  ≈	
  1.5	
  GeV	
  	
  >>	
  ΛQCD	
  ≈	
  0.3	
  GeV	
  	
  
	
  	
  	
  	
  	
  	
  Implica@on:	
  top’s	
  life@me	
  (~1/Γtop)	
  is	
  much	
  smaller	
  than	
  the	
  typical	
  	
  
	
  	
  	
  	
  	
  	
   	
   	
   	
  	
  	
  	
  hadroniza@on	
  @me	
  (~1/ΛQCD).	
  
	
  	
  	
  	
  	
  	
  Profound	
  consequence:	
  top	
  decays	
  before	
  forming	
  strongly	
  interac@ng	
  bound	
  states	
  

	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (i.e.	
  mesons).	
  

ü  This	
  is	
  of	
  major	
  importance.	
  For	
  the	
  other	
  quarks	
  we	
  have	
  to	
  make	
  conclusions	
  based	
  on	
  	
  
	
  	
  	
  	
  	
  	
  modeling	
  of	
  non-­‐perturba@ve	
  physics.	
  This	
  can	
  be	
  done	
  but	
  can	
  be	
  extremely	
  tricky.	
  
	
  	
  	
  	
  	
  	
  In	
  certain	
  cases	
  even	
  beyond	
  our	
  ability	
  to	
  model	
  QCD	
  (not	
  even	
  speaking	
  of	
  solving	
  it).	
  
ü  The	
  fact	
  that	
  top	
  decays	
  (largely*)	
  free	
  of	
  non-­‐perturba@ve	
  effects	
  gives	
  us	
  added	
  	
  
	
  	
  	
  	
  	
  	
  confidence	
  that	
  we	
  know	
  what	
  we	
  are	
  doing	
  regarding	
  SM	
  physics	
  	
  
	
  	
  	
  	
  	
  	
  (it	
  really	
  macers	
  in	
  the	
  grand	
  scheme	
  of	
  things…).	
  

Top	
  is	
  the	
  only	
  quark	
  that	
  decays	
  as	
  a	
  bare	
  par@cle.	
  



•  We	
  refer	
  to	
  the	
  top	
  mode	
  based	
  	
  
	
  	
  	
  	
  	
  	
  on	
  the	
  measured	
  final	
  state.	
  	
  
	
  	
  	
  	
  	
  	
  Here	
  are	
  the	
  SM	
  op@ons:	
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In particular one can easily show that for the top, the 
lepton+ (or the d), in the top rest frame,  tends to be 
emitted in the same direction of the top spin.

Note that this has nothing to do with W polarization! 
In particular one studies spin correlations between the 
top and anti-top in ttbar production and the spin of 
the top in single top. 

Results depend on the degree of polarization (p) of 
the tops themselves and from the choice of the “spin-
analyzer” ki.

How to measure top spin

1

Γ

dΓ

d cos θ
=

1 + p ki cos θ

2

Top quark decays
Since mt > MW + mb a top quark decays
predominantly into a b quark and an on-shell W
boson

t → W+ + b
|
→ l+ + ν

t → W+ + b
|
→ q + q̄

the branching ratio to leptons is given by
counting the decay modes of the W , eν̄e, µν̄µ,
τ ν̄τ and three colours of ud̄ and cs̄,

BR(W+ → e+ν̄) =
1

3 + 3 + 3
≈ 11%.

the branching ratio of top pairs to one flavour of
lepton + jets is 2 × 1

9 × 2
3 ≃ 0.15

QCD, top and LHCLecture IV: Top Physics – p.6/48



•  At	
  hadron	
  colliders	
  top	
  quarks	
  are	
  produced	
  in	
  pairs	
  (dominant)	
  or	
  singly.	
  
Top Pair-Production ChannelsTop Pair-Production Channels

Top Single-Production Channels

Top Single-Production Channels

Top Single-Production Channels

•  Top	
  quark	
  produc@on	
  rates,	
  for	
  various	
  ini@al	
  states	
  and	
  colliders:	
  

substantial uncertainties. In turn, large-x gluons play an important role in theoretical pre-

dictions of many BSM scenarios like gluino pair production [15], high-mass Kaluza-Klein

graviton production [16–18], resonances in the tt̄ invariant mass spectrum [19, 20], quark

compositeness in inclusive jet and dijet production [21–24] and many others. The availabil-

ity of the full NNLO calculation makes top quark pair production the only hadron collider

process that is both sensitive to the gluon and can be consistently included in a NNLO

PDF fit without any approximations. Hadronic constraints on the gluon PDF are provided

also by inclusive jet and dijet production [25–28] and isolated photon production [29, 30],

though these two processes are only known to NLO and a↵ected by substantial scale un-

certainties.1

The focus of this paper is, on the one hand, to provide an up-to-date summary of

the theoretical uncertainties on the total tt̄ cross section, and on the other hand, to show

how top quark data can be used to constrain the large-x gluon PDF. Indeed, unlike the

Tevatron, top quark pair production at the LHC is dominated by gg scattering, thus

providing a complementary probe of the gluon PDF. As shown in Table 1, at the LHC the

relative contribution of the gg subprocess is between 85% and 90% depending on the beam

energy, with qq being about 10-15%, almost the opposite of the Tevatron.

TeVatron LHC 7 TeV LHC 8 TeV LHC 14 TeV

gg 15.4% 84.8% 86.2% 90.2%

qg + q̄g -1.7% -1.6% -1.1% 0.5%

qq 86.3% 16.8% 14.9% 9.3%

Table 1. The relative contribution of the various partonic sub-channels to the NNLO+NNLL cross
section for di↵erent colliders and collider energies, computed with the MSTW2008NNLO PDFs.
We loosely label with qq the sum of all processes without gluons in the initial state.

To illustrate the range of Bjorken-x’s to which the top cross section is sensitive, the

correlation [32] between the top quark production cross section and the gluon and the up

quark PDFs is shown in Fig. 1 for the various cases that we will discuss in the paper:

Tevatron Run II, LHC 7, 8 and 14 TeV. A correlation whose absolute magnitude is close

to 1 indicates that variations of PDFs with a particular value of x will in turn translate

into cross-section variations. It is clear from Fig. 1 that for the LHC the top quark cross

section directly probes the gluon in the range of x between x = 0.1 and x = 0.5, where

gluon PDF uncertainties are relatively large.

The outline of this paper is as follows. In Sect. 2 we discuss the settings of the

calculation and the treatment of the various theoretical uncertainties. In Sect. 3 we provide

up-to-date predictions for the tt̄ cross section at the Tevatron and LHC and compare with

the most recent experimental data. In Sect. 4 we quantify the impact of the available

top data on the gluon PDF, show how it reduces the gluon PDF’s large-x uncertainties,

1Recent progress on the NNLO cross section for jet production was presented in Ref. [31], so in the near

future it should also be possible to consistently include this process in NNLO PDF fits.

– 2 –

Ques@on:	
  any	
  guesses	
  why	
  the	
  rate	
  for	
  the	
  qg	
  reac@on	
  (starts	
  at	
  NLO)	
  is	
  nega@ve?	
  Is	
  this	
  OK?	
  

quark production. In each section, we first review the presently available standard model
predictions and discuss then possible new physics effects. Moreover, experimental results
from the Tevatron and measurement perspectives at the LHC will be briefly outlined. As
usual in particle phenomenology, values of particles masses and decay widths are given
in natural units putting ! = c= 1.

Table 1: Upper part: number of tt̄ events produced at the Tevatron and expected tt̄ produc-
tion rates at the LHC and at a future e+e− linear collider (ILC), where L is the integrated
luminosity of the respective collider in units of fb−1. Lower part: Number of t and t̄
events at the Tevatron and expected number at the LHC produced in single top reactions.

tt̄ pairs dominant reaction Ntt̄
Tevatron: pp̄ (1.96 TeV) qq̄→ tt̄ ∼ 7 ·104×L
LHC: pp (14 TeV) gg→ tt̄ ∼ 9 ·105×L
ILC: e+e− (400 GeV) e+e− → tt̄ ∼ 800×L

single top dominant reaction (Nt +Nt̄)
Tevatron: u+b W−→d+ t ∼ 3 ·103×L
LHC: u+b W−→d+ t ∼ 3.3 ·105×L

2. The profile of the top quark
The top quark couples to all known fundamental interactions. Because of its large mass,
it is expected to couple strongly to the forces that break the electroweak gauge symmetry.
While the interactions of the top quark have not been explored in great detail so far,
its mass has been experimentally determined very precisely. In this section we briefly
describe what is known about the properties of the top quark, i.e., its mass, lifetime, spin,
and its charges. Because its mass plays a central role in the physics of this quark, we shall
first discuss the meaning of this parameter.

2.1. Mass
The top mass is a convention-dependent parameter, like the other parameters of the SM.
As the top quark does not hadronize (see section 2.2), it seems natural to exploit the
picture of the top quark being a highly unstable bare fermion. This suggests to use the
concept of on-shell or pole mass, which is defined to be the real part of the complex-
valued pole of the quark propagator St(p). This is a purely perturbative concept. A quark
is unobservable due to colour confinement, so its full propagator has no pole. In finite-
order perturbation theory the propagator of the top quark has a pole at the complex value
√

p2 =mt− iΓt/2, where mt is the pole or on-shell mass and Γt is the decay width of the

2

From	
  W.	
  Bernreuther	
  	
  ‘08	
  
Top	
  pairs	
  only	
  



Top	
  quark	
  quantum	
  numbers	
  

W helicity in top decay

W boson helicity fractions
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•  Electric	
  charge	
  =	
  +2/3|e|.	
  
•  Because	
  tops	
  are	
  mostly	
  pair	
  produced,	
  it	
  was	
  only	
  recently	
  shown	
  that	
  
	
  	
  	
  	
  	
  	
  the	
  exo@c	
  charge	
  -­‐4/3	
  (i.e.	
  decay	
  to	
  bW-­‐)	
  is	
  unlikely.	
  	
  

•  CKM:	
  from	
  weak	
  decays	
  it	
  follows	
  that:	
  

	
  
•  Limits	
  from	
  measurements	
  of	
  top	
  decays	
  are	
  much	
  weaker.	
  

Γt/mt ≃ 0.008. Thus one can factorize, to good approximation, the theoretical description
of these reactions into the production of on-shell single top quarks or tt̄ pairs (being
produced in a certain spin configuration) and the decay of t and/or t̄. We treat top-quark
decays first while the survey of hadronic production of these quarks is postponed to the
following sections. We shall review (polarized) top-quark decays in the SM, then discuss
effects of possible anomalous couplings in the tbW vertex, and finally consider several
new decay modes which are possible in various SM extensions.

3.1. SM decays
In the SM, which involves three generations of quarks and leptons, the only two-particle
decays of the top quark4 which are possible to lowest order in the (gauge) couplings
are t → bW+, t → sW+, and t → dW+. Their rates are proportional to the squares of
the CKM matrix elements |Vtq|2, q = b,s,d, respectively. The rate of t → X , i.e. the
total decay width Γt of the top quark, is given by the sum of the widths of these three
decay modes, as the branching ratios of the loop-induced flavour-changing neutral current
decays are negligibly small in the SM (see section 3.2.4). The analysis of data from weak
decays of hadrons yields 0.9990 < |Vtb| < 0.9992 at 95% C.L. [19], using the unitarity
of the CKM matrix. From the recent observation of the oscillation of Bs ↔ B̄s mesons
by the D0 and CDF experiments at the Tevatron and from analogous data on Bd ↔ B̄d
oscillations one can extract the ratio 0.20 < |Vtd/Vts| < 0.22 [19]. The unitarity relation
|Vtb|2+ |Vts|2+ |Vtd|2 = 1 implies that the total decay rate is completely dominated by
t → bW+, and one gets for the branching ratios

B(t→ bW+) = 0.998, B(t→ sW+) ≃ 1.9×10−3, B(t→ dW+)≃ 10−4. (3.1)

There is direct information from the Tevatron which implies that |Vtb|≫ |Vtd|, |Vtd|, with-
out using the unitarity constraint. The CDF and D0 collaborations measured

R≡
B(t → bW )

∑q=b,s,d B(t→ qW )
=

|Vtb|2

|Vtb|2+ |Vts|2+ |Vtd|2
(3.2)

by comparing the number of tt̄ candidates with 0, 1, and 2 tagged b jets. The right-hand
side of (3.2) is the standard-model interpretation of this ratio. A collection of CDF and
D0 results on R is given in [28,29]; the recent D0 result is R= 0.97+0.09

−0.08 [29]. The D0 [3]
and the CDF [4] experiments reported evidence for single top quark production. The
agreement of the measured production cross section with the SM expectation was used
by these experiments for a direct determination of the CKM matrix element Vtb with the
result 0.68< |Vtb|≤ 1 [3] and |Vtb| = 0.88±0.14±0.07 [4]. (See also section 5).

3.1.1. The total decay width:

As just discussed, the total decay width of the top quark is given in the SM, to the
precision required for interpreting the Tevatron or forthcoming LHC experiments, by the

4Unless stated otherwise, the discussion of this section applies analogously also to t̄ decays.

6

•  Top	
  spin:	
  strongly	
  correlated	
  with	
  the	
  helicity	
  of	
  the	
  W	
  

V −A structure and angular momentum conservation allow the decay into a zero-helicity
and negative helicityW boson, but the decay amplitude intoW (λW = +1) is suppressed
by a factor m2b/m2W . This is due to the fact that the V −A law forces the b quark, if it
were massless, to have negative helicity – but this is in conflict with angular momentum
conservation. The three cases are illustrated in figure 1. For the decay fractions one

W+b t W+b t

W+b t

Figure 1: Illustration of top-quark decay into a b quark and aW+ boson with λW = 0,∓1.
ForW+(λW = +1) the b quark must have positive helicity (to lowest order), which has
vanishing probability for mb → 0.

obtains at tree level, putting mb = 0, and using mW = 80.40 GeV:

FB0 =
m2t

m2t +2m2W
= 0.6934−0.0025× (171−mt [GeV]) ,

FB− =
2m2W

m2t +2m2W
= 0.3066+0.0025× (171−mt [GeV]) , FB+ = 0 . (3.7)

Once gluon (and photon) radiation is taken into account, F+ ̸= 0 even in the limit mb = 0.
The W -helicity fractions F0,∓ were computed in [36, 46], taking the O(αs) QCD and
O(α) electroweak corrections, and the corrections due to the finiteW width and mb ̸= 0
into account. These corrections are very small; in particular they generate a small fraction
F+. The result of [36] is

F0 = 0.99×FB0 , F− = 1.02×FB− , F+ = 0.001 . (3.8)

For t̄ → b̄W− we have F̄0 = F0, F̄− = F+, and F̄+ = F− in the SM. Violations of these
relations due to theCP-violating KM phase δKM are negligibly small.
The large fraction F0 ≃ 0.7 signifies that top-quark decay is a source of longitudinally
polarizedW bosons – in fact, the only significant one at the LHC. (Almost allW bosons
produced in QCD reactions are transversely polarized.) Recall that, in the SM, the lon-
gitudinally polarized state of theW boson is generated by the charged component of the
SU(2) Higgs doublet field. If the dynamics of electroweak symmetry breaking is differ-
ent from the SM Higgs mechanism, one may expect deviations of the tbW vertex from its
SM structure, and F0 should be sensitive to it. The fraction F+ is obviously sensitive to
a possible V +A admixture in the charged weak current involving the top quark. These
issues will be addressed in sections 3.1.3 and 3.2.1.
Information about the polarization of the W boson is obtained from the angular distri-
butions of one of its decay products, W+ → ℓ+νℓ,qq̄′. As a u-type jet cannot be distin-
guished experimentally from a d-type jet, the best choice is to consider a charged lepton

8

SM	
  predic@ons	
  for	
  the	
  W	
  helicity	
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  discovery	
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  in	
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•  We	
  had	
  an	
  idea	
  about	
  Mtop	
  before	
  	
  
	
  	
  	
  	
  	
  	
  top	
  quarks	
  were	
  first	
  seen:	
  

•  Using	
  the	
  known	
  Higgs	
  and	
  W	
  masses	
  one	
  	
  
	
  	
  	
  	
  	
  	
  can	
  again	
  indirectly	
  “rediscover”	
  the	
  top.	
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  returned	
  mass	
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  determina@ons.	
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Figure 3: ��2 profiles as a function of the Higgs mass (top left), the top quark mass (top right), the W
boson mass (bottom left) and the e↵ective weak mixing angle (bottom right). The data points placed along
��2 = 1 represent direct measurements of the respective observable and their ±1� uncertainties. The grey
(blue) bands show the results when excluding (including) the new MH measurements from (in) the fits.
For the blue bands as a function of mt, MW and sin2✓`

e↵

the direct measurements of the observable have
been excluded from the fit in addition (indirect determination). The solid black curves in the lower plots
represent the SM prediction for sin2✓`

e↵

and MW derived from the minimal set of input measurements, as
described in the text. In all figures the solid (dotted) lines illustrate the fit results including (ignoring)
theoretical uncertainties in the fit.

band) gives

sin2✓`
e↵

= 0.231496± 0.000030mt ± 0.000015MZ
± 0.000035

�↵had (5)

± 0.000010↵S ± 0.000002MH
± 0.000047

theo

, (6)

= 0.23150± 0.00010
tot

, (7)

which is compatible and more precise than the average of the LEP/SLD measurements [9]. The
total uncertainty is dominated by that from �↵

had

and mt, while the contribution from the uncer-
tainty in MH is again very small. Adding quadratically theoretical and experimantal uncertainties
would lead to a total uncertainty in the sin2✓`

e↵

prediction of 0.00007.

Finally, the top quark mass, cf. Fig. 3 (top right, blue band), is indirectly determined to be

mt = 175.8+2.7
�2.4 GeV , (8)

in agreement with the direct measurement and cross-section based determination (cf. Footnote 5).
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These experimental results should be compared to the

theoretical calculations that yield 7.16+0.20
−0.23 pb for top-quark

mass of 173.3 GeV/c2 [1] at
√

s = 1.96 TeV, σtt̄ = 172.0+6.4
−7.5 pb

at
√

s = 7 TeV, and σtt̄ = 245.8+8.8
−10.6 pb at

√
s = 8 TeV, at the

LHC [1]( see Section B).
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Figure 1: Measured and predicted tt production cross sections
from Tevatron energies in pp collisions to LHC energies in
pp collisions. Tevatron data points at

√
s = 1.8 TeV are from

Refs. [41,42]. Those at
√

s = 1.96 TeV are from Refs. [19–21].
The ATLAS and CMS data points are from Refs. [25,35]
and [30,36,37], respectively. Theory curves are generated us-
ing [1] for mt = 173.3 GeV/c2. Figure adapted from Ref. [40].

In Fig. 1, one sees the importance of pp at Tevatron energies

where the valence antiquarks in the antiprotons contribute to

the dominant qq production mechanism. At LHC energies, the

dominant production mode is gluon-gluon fusion and the pp-pp

difference nearly disappears. The excellent agreement of these

measurements with the theory calculations is a strong validation

of QCD and the soft-gluon resummation techniques employed

in the calculations. The measurements reach high precision and

provide stringent tests of pQCD calculations at NNLO+NNLL

level including their respective PDF uncertainties.

Most of these measurements assume a t → Wb branching

ratio of 100%. CDF and DØ have made direct measurements

December 18, 2013 12:01

•  Impressive	
  agreement	
  between	
  theory	
  and	
  experiment	
  across	
  colliders	
  and	
  collider	
  energies	
  

PDG	
  2013	
  

•  Theory	
  includes	
  NNLO	
  +	
  NNLL;	
  let’s	
  discuss	
  what	
  this	
  means	
  in	
  the	
  rest	
  of	
  this	
  lecture.	
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

•  Let’s	
  begin	
  with	
  the	
  simplest	
  (theore@cally)	
  observable:	
  the	
  total	
  cross-­‐sec@on.	
  

•  A	
  dimensional	
  quan@ty	
  (typically	
  in	
  [pb]).	
  Tells	
  us	
  the	
  rate	
  for	
  producing	
  top	
  pairs.	
  
	
  	
  	
  	
  	
  	
  The	
  total	
  number	
  of	
  produced	
  pairs	
  is	
  obtained	
  a~er	
  mul@plying	
  by	
  the	
  collider	
  Luminocity.	
  

•  In	
  reality,	
  the	
  total	
  x-­‐sec@on	
  cannot	
  be	
  measured	
  because	
  of	
  the	
  presence	
  of	
  cuts.	
  
•  Cuts	
  represent	
  the	
  basic	
  fact	
  that	
  any	
  detector	
  has	
  a	
  finite	
  size.	
  What	
  is	
  actually	
  measured	
  	
  
	
  	
  	
  	
  	
  	
  are	
  the	
  number	
  of	
  events	
  within	
  the	
  detector.	
  

•  The	
  part	
  of	
  phase	
  space	
  which	
  is	
  covered	
  by	
  the	
  detector	
  is	
  called	
  fiducial	
  volume	
  	
  
	
  	
  	
  	
  	
  	
  (or	
  fiducial	
  x-­‐sec@on).	
  

Note:	
  we	
  pair	
  produce	
  top	
  quarks,	
  but	
  due	
  to	
  the	
  finiteness	
  of	
  the	
  fiducial	
  volume,	
  	
  
	
  it	
  may	
  happen	
  that	
  one	
  top	
  from	
  the	
  pair	
  goes	
  inside	
  	
  the	
  detector	
  (and	
  is	
  thus	
  detected)	
  	
  
	
  while	
  the	
  second	
  goes	
  outside	
  of	
  the	
  detector.	
  

	
  
•  This	
  way	
  we	
  detect	
  events	
  containing	
  a	
  single	
  top	
  quark,	
  not	
  a	
  pair.	
  	
  
	
  	
  	
  	
  	
  	
  Yet	
  this	
  is	
  the	
  same	
  process.	
  Is	
  this	
  OK?	
  What	
  about	
  single	
  top?	
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2
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2
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2
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The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux
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expressed through the partonic luminosity
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2
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2
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:
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The	
  computed	
  x-­‐sec@on	
  is	
  a	
  convolu@on	
  of	
  a	
  partonic	
  flux	
  and	
  a	
  perturba@ve	
  x-­‐sec@on	
  

2 M. CZAKON, P. FIEDLER, A. MITOV AND J. ROJO

2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

2 M. CZAKON, P. FIEDLER, A. MITOV AND J. ROJO

2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

where:	
  

Jacobian	
  factor	
   Partonic	
  luminocity	
  

•  We	
  sum	
  over	
  all	
  possible	
  pairs	
  of	
  partons.	
  The	
  details	
  depend	
  on	
  the	
  perturba@ve	
  order	
  
•  LO:	
  qqbar,	
  gg	
  
•  NLO:	
  LO	
  ones	
  +	
  qg	
  
•  NNLO:	
  NLO	
  ones	
  +	
  qq,qq’,	
  qqbar’	
  

•  Thus,	
  star@ng	
  with	
  NNLO,	
  all	
  possible	
  partonic	
  channels	
  contribute!	
  
•  Note:	
  q,	
  qbar,	
  etc.	
  run	
  over	
  all	
  quark	
  flavors	
  lighter	
  than	
  top	
  (u,d,s,c,b).	
  	
  
•  This	
  is	
  known	
  as	
  a	
  scheme	
  with	
  5	
  ac@ve	
  flavors	
  (i.e.	
  NF=5).	
  
•  We	
  do	
  not	
  have	
  to	
  work	
  in	
  this	
  scheme	
  (it	
  is	
  a	
  macer	
  of	
  choice!).	
  	
  
	
  	
  	
  	
  	
  	
  A	
  natural	
  choice	
  for	
  top	
  at	
  TEV/LHC	
  
•  An	
  alterna@ve	
  would	
  be	
  to	
  work	
  with	
  6	
  flavor	
  scheme	
  (i.e.	
  we	
  need	
  top	
  pdf).	
  	
  
•  This	
  is	
  not	
  needed	
  for	
  top	
  @LHC	
  but	
  at	
  a	
  future	
  higher	
  energy	
  collider	
  (100TeV	
  for	
  example).	
  
•  Total	
  x-­‐sec@on	
  is	
  dominated	
  by	
  scales	
  ~	
  Mtop,	
  thus	
  even	
  for	
  future	
  collider	
  NF=5	
  scheme	
  is	
  OK	
  
•  For	
  differen@al	
  x-­‐sec@on,	
  PT	
  distribu@on	
  at	
  high	
  PT,	
  NF=6	
  scheme	
  would	
  start	
  to	
  be	
  needed.	
  
•  Note:	
  same	
  situa@on	
  for	
  bocom	
  produc@on.	
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The	
  computed	
  x-­‐sec@on	
  is	
  a	
  convolu@on	
  of	
  a	
  partonic	
  flux	
  and	
  a	
  perturba@ve	
  x-­‐sec@on	
  

•  The	
  above	
  equa@on	
  is	
  not	
  exact	
  (due	
  to	
  factoriza@on	
  breaking	
  effects)	
  
•  Factoriza@on	
  breaking	
  effects	
  for	
  inclusive	
  observables	
  are	
  small	
  ~	
  ΛQCD/μF	
  <<	
  1	
  
•  For	
  less	
  inclusive	
  observables,	
  these	
  effects	
  start	
  to	
  grow.	
  	
  
•  If	
  we	
  try	
  to	
  imagine	
  fully	
  exclusive	
  final	
  states	
  then	
  these	
  correc@on	
  become	
  O(1),	
  
	
  	
  	
  	
  	
  	
  i.e.	
  factoriza@on	
  breaks	
  down	
  and	
  the	
  above	
  equa@on	
  is	
  not	
  applicable	
  any	
  more.	
  

To	
  remember	
  (for	
  non-­‐experts):	
  
	
  
•  Factoriza@on	
  breaking	
  effects	
  are	
  usually	
  not	
  a	
  worry	
  
•  But	
  we	
  cannot	
  ignore	
  them	
  altogether	
  
•  Every	
  @me	
  we	
  do	
  something	
  kinema@cally	
  extreme,	
  it	
  is	
  worth	
  checking	
  if	
  it	
  is	
  safe.	
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Meaning	
  of	
  the	
  various	
  arguments	
  above.	
  

•  m	
  –	
  mass	
  of	
  the	
  heavy	
  quark.	
  It	
  is	
  a	
  scheme	
  dependent	
  quan@ty.	
  Usually	
  the	
  pole	
  mass.	
  

•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  ≤	
  β	
  <	
  1.	
  

•  s	
  –	
  partonic	
  c.m.	
  energy.	
  s=x1x2Scollider	
  	
  ;	
  x1,2:	
  partonic	
  frac@ons;	
  we	
  integrate	
  over	
  them.	
  	
  

•  β	
  is	
  the	
  only	
  kinema@cal	
  variable	
  (the	
  only	
  dimensionless	
  one!).	
  	
  
	
  	
  	
  	
  	
  	
  It	
  has	
  a	
  meaning	
  of	
  a	
  rela@ve	
  velocity	
  of	
  the	
  two	
  tops.	
  

•  β≈0	
  is	
  called	
  partonic	
  threshold	
  (i.e.	
  4m2≈s).	
  All	
  the	
  energy	
  in	
  the	
  system	
  is	
  taken	
  by	
  the	
  
	
  	
  	
  	
  	
  	
  masses;	
  ==>	
  no	
  energy	
  le~	
  for	
  addi@onal	
  radia@on.	
  
•  Therefore,	
  only	
  so~	
  radia@on	
  is	
  possible	
  (so~	
  ==	
  vanishing	
  energy).	
  
	
  	
  	
  	
  	
  	
  Important:	
  This	
  is	
  the	
  basis	
  of	
  the	
  so~	
  gluon	
  resumma@on	
  which	
  we	
  will	
  discuss	
  later.	
  
•  β≈1	
  is	
  the	
  high-­‐energy	
  limit	
  (i.e.	
  4m2	
  <<	
  s,	
  or	
  simply	
  put,	
  m	
  à	
  0).	
  	
  
	
  
	
  
	
  con@nue…	
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max
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d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =
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1� �

2
Lij

✓
1� �

2
max
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, µ
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F

◆
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expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ
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F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
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(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1
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◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
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�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s
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gg = s̃
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1
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•  Important:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  Recall:	
  	
  β≈1	
  is	
  the	
  high-­‐energy	
  limit	
  (i.e.	
  4m2	
  <<	
  s,	
  or	
  simply	
  put,	
  m	
  à	
  0).	
  
	
  
•  In	
  high	
  energy	
  collisions,	
  the	
  mass	
  of	
  a	
  parton	
  is	
  not	
  its	
  intrinsic	
  property	
  anymore.	
  	
  
•  All	
  that	
  macers	
  is	
  if	
  the	
  mass	
  is	
  much	
  smaller	
  than	
  the	
  relevant	
  kinema@c	
  scale	
  Q.	
  	
  
•  If	
  m<<Q	
  we	
  can	
  simply	
  set	
  m=0.	
  	
  
•  If	
  x-­‐sec@on	
  diverges	
  due	
  to	
  collinear	
  singulari@es,	
  then	
  we	
  need	
  to	
  use	
  	
  
	
  	
  	
  	
  	
  	
  collinearly	
  safe	
  observables,	
  like	
  jets,	
  or	
  introduce	
  PDF	
  /	
  fragmenta@on	
  func@ons	
  	
  
	
  	
  	
  	
  	
  	
  that	
  “absorb”	
  the	
  collinear	
  singulari@es.	
  
•  If	
  we	
  leave	
  small	
  but	
  non-­‐zero	
  mass	
  then	
  we	
  have	
  an	
  ar@ficially	
  finite	
  result.	
  
•  It	
  contains	
  terms	
  like	
  Log(m/Q)	
  >>1.	
  
•  Moreover	
  at	
  all	
  orders	
  in	
  perturba@on	
  theory	
  we	
  have	
  terms	
  like	
  αS

n	
  Logk(m/Q).	
  
•  This	
  breaks	
  the	
  convergence	
  of	
  the	
  perturba@ve	
  expansion	
  by	
  effec@vely	
  changing	
  

	
  	
  
	
   	
   	
   	
   	
   	
  	
  αS

n	
  à	
  αS
n	
  Logk(m/Q)	
  >>	
  αS

n	
  	
  
	
  
•  Such	
  term	
  then	
  need	
  to	
  be	
  resummed	
  to	
  all	
  orders	
  (different	
  kind	
  of	
  resumma@on	
  w/r	
  to	
  the	
  	
  
	
  	
  	
  	
  	
  	
  so~	
  gluon	
  resumma@on	
  men@oned	
  above!).	
  
	
  
	
  
•  Above	
  is	
  true	
  for	
  all	
  massive	
  partons	
  t,b,c	
  but	
  also	
  e	
  in	
  the	
  context	
  of	
  QED.	
  

Mele,	
  Nason	
  ’91;	
  natural	
  generaliza@on	
  to	
  amplitudes	
  see	
  Mitov,	
  Moch	
  ’06	
  ‘07	
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as
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/S;
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the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy
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expressed through the partonic luminosity
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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m
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In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
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(0)
gg ⌦ P

(0)
gg ,(5)
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gg = s̃
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✓
1
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◆2
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1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
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The	
  computed	
  x-­‐sec@on	
  is	
  a	
  convolu@on	
  of	
  a	
  partonic	
  flux	
  and	
  a	
  perturba@ve	
  x-­‐sec@on	
  

•  μF	
  :	
  factoriza@on	
  scale;	
  separates	
  long	
  distance	
  (pdf)	
  from	
  short	
  distance	
  (partonic	
  x-­‐sec@on)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  effects	
  	
  
•  It	
  is	
  unphysical.	
  It	
  appears	
  as	
  a	
  result	
  of	
  the	
  approxima@ons	
  we	
  make	
  	
  
	
  	
  	
  	
  	
  	
  (i.e.	
  the	
  factorized	
  form	
  of	
  the	
  above	
  equa@on).	
  
•  There	
  is	
  no	
  “first	
  principles”	
  idea	
  about	
  how	
  to	
  choose	
  its	
  value.	
  	
  
•  In	
  top	
  physics	
  we	
  set	
  it	
  equal	
  to	
  the	
  relevant	
  hard	
  scale:	
  

•  For	
  the	
  total	
  x-­‐sec@on	
  only	
  one	
  such	
  scale	
  exists:	
  Mtop.	
  
•  For	
  more	
  differen@al	
  observables	
  becer	
  values	
  are	
  HT/2	
  or	
  mT,top	
  with:	
  
•  For	
  even	
  more	
  extreme	
  kinema@cs,	
  even	
  the	
  rapidity	
  might	
  have	
  to	
  be	
  included	
  (not	
  yet)	
  

µ̂(2) =
1

2

X

i

mT ,i , i 2 final state , (3.4)

µ̂(3) = mt , (3.5)

with the transverse masses mT ,i =
q

p2
T ,i +m2

i . We point out that, since in our calculations

the top quarks are treated as stable particles at the level of hard matrix elements, the

di↵erence between eq. (3.3) and (3.4) is the contribution to the latter of the transverse

momentum of the massless parton which is possibly present in the final state (owing to

real-emission corrections); the scale of eq. (3.4) is nothing but HT/2.

Our simulations are carried out at the 8 TeV LHC. Since we only consider the process

of eq. (2.1), i.e. top-pair production without any background contamination, all of our

events are tt̄ ones by construction. On the other hand, in order to perform a more realistic

analysis, we also impose the following event selection: on top of having two oppositely-

charged leptons (electrons and/or muons), events are required to contain at least two

b-flavored jets, with jets defined according to the anti-kT algorithm [32] with R = 0.5, as

implemented in FastJet [33]. The events so selected are then subject to the following cuts:

�

�⌘(`±)
�

�  2.4 , pT (`
±) � 20 GeV ,

|⌘(Jb)|  2.4 , pT (Jb) � 30 GeV . (3.6)

If more than two b-jets are present, the cuts above are imposed on the two hardest ones.

In order to simplify our analysis, b-hadrons have been set stable in HERWIG6, so that the

vast majority of the events just contain the two charged leptons arising from top decays.

In addition to the cuts of eq. (3.6), we have also checked the e↵ects of imposing lepton-jet

isolation cuts: these being negligible, we shall not consider them any further in this paper.

3.1 Calculation of the moments and of the functions fC,U,L(mt)

With the settings described above, we have simulated tt̄ production in all of the six cal-

culational scenarios of table 2; in the case of NLO+PS+MS (which we believe to give the

best description of SM physics, and is thus treated as our reference computation), results

have been obtained with all of the three scales choices of eqs. (3.3)–(3.5), while in all the

other cases only the scale of eq. (3.3) has been considered.

Each of these calculations has been performed eleven times, once for each value of the

top quark mass chosen in the discrete set:

mt = (168, 169, . . . , 178) GeV . (3.7)

In each of these runs, we have computed the first four Mellin moments for all the observables

listed in table 1, both without applying any cuts, and with the selection cuts of eq. (3.6); all

moments are evaluated on the fly (i.e. not a-posteriori using the corresponding di↵erential

distribution), as explained in appendix A. At the end of the runs, we have the predictions

for the Mellin moments that correspond to the central scales and PDF set, and to all non-

central scales and PDFs that belong to the relevant error set; as already explained, all the

non-central results do not require additional runs, but are obtained through reweighting.
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•  Because	
  there	
  is	
  no	
  unique	
  (or	
  “best”)	
  choice	
  for	
  the	
  value	
  of	
  this	
  scale,	
  the	
  philosophy	
  is:	
  
	
  	
  	
  	
  	
  	
  we	
  pick	
  one	
  reasonable	
  value	
  (called	
  central	
  value)	
  and	
  then	
  vary	
  μF	
  around	
  it.	
  
•  How	
  much	
  to	
  vary	
  is	
  anybody’s	
  guess	
  (more	
  later)	
  

•  μR	
  -­‐	
  Renormaliza@on	
  scale.	
  This	
  is	
  the	
  scale	
  at	
  which	
  the	
  running	
  coupling	
  is	
  evaluated.	
  
•  Natural	
  choice:	
  	
  μF	
  =	
  μR	
  =	
  Q	
  (=Mtop).	
  Has	
  to	
  be	
  varied,	
  too.	
  
•  One	
  idea	
  exists	
  about	
  how	
  to	
  fix	
  its	
  value	
  (BLM).	
  Comes	
  from	
  the	
  requirement	
  for	
  restoring	
  
	
  	
  	
  	
  	
  	
  conformal	
  invariance	
  of	
  the	
  QCD	
  Lagrangian.	
  Cau@on:	
  could	
  work	
  very	
  well,	
  but	
  not	
  always!	
  

Brodsky,	
  Lepage,	
  Mackenzie	
  ‘83	
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as
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the c.m. energy of the hadron collider and � =
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As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as
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In the above equation L = ln
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µ
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2
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, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s
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The	
  computed	
  x-­‐sec@on	
  is	
  a	
  convolu@on	
  of	
  a	
  partonic	
  flux	
  and	
  a	
  perturba@ve	
  x-­‐sec@on	
  

•  αS:	
  the	
  MSbar	
  renormalized	
  strong	
  coupling	
  through	
  the	
  same	
  perturba@ve	
  order	
  as	
  the	
  	
  
	
  	
  	
  	
  	
  	
  partonic	
  crosss-­‐sec@on.	
  
•  It	
  is	
  running	
  with	
  NF=5	
  ac@ve	
  flavors	
  (same	
  as	
  pdf).	
  This	
  could	
  be	
  chosen	
  differently.	
  
•  Note:	
  the	
  strong	
  coupling	
  αS	
  appears	
  in	
  two	
  places:	
  explicitly	
  in	
  the	
  partonic	
  cross-­‐sec@on	
  
	
  	
  	
  	
  	
  	
  but	
  also	
  implicitly	
  in	
  the	
  partonic	
  fluxes	
  (through	
  their	
  DGLAP	
  evolu@on).	
  
•  Note:	
  nowadays	
  we	
  typically	
  use	
  the	
  LHAPDF	
  library	
  for	
  pdf	
  evolu@on.	
  It	
  provides	
  us	
  with	
  
	
  	
  	
  	
  	
  	
  the	
  evolved	
  strong	
  coupling.	
  This	
  way	
  we	
  ensure	
  we	
  use	
  the	
  same	
  coupling	
  	
  
	
  	
  	
  	
  	
  	
  (i.e.	
  defined	
  the	
  same	
  way)	
  in	
  both	
  places.	
  

•  More	
  on	
  the	
  choice	
  of	
  scales:	
  	
  

•  If	
  we	
  use	
  a	
  running	
  scale	
  (also	
  called	
  dynamic)	
  we,	
  in	
  essence,	
  include	
  certain	
  higher	
  order	
  	
  
	
  	
  	
  	
  	
  	
  terms.	
  For	
  example,	
  at	
  NLO	
  (b0,1	
  is	
  the	
  beta	
  func@on	
  of	
  QCD):	
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is running between the b and the t masses and because of their large diÆerence

we simply fix nf = 5. However, in practical applications (especially with scales of

the order of the b and the c quark) the strong ordering assumption is not always

valid and therefore the choice of nf is somehow ambiguous. The common practice

is to change the value of nf by one unit when the hard scale crosses the mass of

the corresponding heavy quark. Such a change should be supplemented with an

additional constraint that relates the values of the strong coupling evaluated in

the two schemes at the switching point. In the MS renormalization scheme, the

strong coupling is continuous at the switching points [19] ( see also [4]), up to

negligible corrections of order O(Æ3
S).

Now it is easy to show that indeed QCD enjoys the property of asymptotic

freedom [20]. In a regime where the strong coupling is small, from (2.15) and

(2.12), it is easy to see that the strong coupling is a decreasing function of the

scale µ if the number of flavors nf < 33/2. That requirement is satisfied in QCD.

The exact solution of Eq.(2.12) to NLO is given by:

ÆS(µ2) =
1

b0 ln(µ2/§2)

(

1° b1 ln [ln(µ2/§2)]

b2
0 ln(µ2/§2)

)

. (2.16)

One can use this expression in order to relate the values of the strong coupling at

two diÆerent scales with NLO accuracy [21]:

ÆS(k2) =
ÆS(µ2)

1 + b0ÆS(µ2) ln(k2/µ2)

√

1° b1

b0

ÆS(µ2)

1 + b0ÆS(µ2) ln(k2/µ2)
(2.17)

£ ln(1 + b0ÆS(µ2) ln(k2/µ2)) +O
≥
Æ2

S(µ2)[ÆS(µ2) ln(k2/µ2)]n
¥ !

.

The constant § contains all the information about the boundary condition to

which Eq.(2.12) must be subjected. It is a low energy scale where the strong

coupling diverges. As we mentioned in Chapter 1, § represents the border between

the perturbative and non-perturbative regimes of QCD. In practice the value of §
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

The	
  computed	
  x-­‐sec@on	
  is	
  a	
  convolu@on	
  of	
  a	
  partonic	
  flux	
  and	
  a	
  perturba@ve	
  x-­‐sec@on	
  

Se�ng	
  	
  	
  μF	
  =	
  μR	
  =	
  μ,	
  the	
  partonic	
  cross-­‐sec@on	
  reads	
  through	
  NNLO:	
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and	
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LO	
   NLO	
   NNLO	
  

•  The	
  LO	
  and	
  NLO	
  x-­‐sec@ons	
  are	
  known	
  fully	
  differen@ally	
  (as	
  well	
  as	
  the	
  inclusive	
  ones)	
  since	
  
	
  	
  	
  	
  	
  	
  the	
  late	
  1980’s.	
  
•  The	
  NNLO	
  total	
  x-­‐sec@ons	
  are	
  now	
  known,	
  too.	
  Differen@al	
  ones	
  are	
  not	
  yet	
  known	
  	
  
	
  	
  	
  	
  	
  	
  through	
  NNLO,	
  but	
  this	
  will	
  change	
  very	
  soon.	
  

•  Various	
  approxima@ons	
  are	
  known;	
  we	
  will	
  discuss	
  them	
  later.	
  

•  The	
  func@ons	
  ~	
  L	
  are	
  of	
  one	
  order	
  lower,	
  i.e.	
  the	
  NNLO	
  ones	
  σ(2,1)	
  and	
  σ(2,2)	
  can	
  be	
  derived	
  	
  
	
  	
  	
  	
  	
  	
  from	
  the	
  NLO	
  x-­‐sec@ons	
  σ(1).	
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How	
  to	
  derive	
  the	
  scale	
  dependence	
  for	
  μF	
  =	
  μR	
  =	
  μ	
  ?	
  

•  Recall	
  that	
  the	
  LHS	
  is	
  formally	
  independent	
  of	
  μ	
  
•  Take	
  a	
  log-­‐deriva@ve	
  w/r	
  to	
  μ	
  of	
  both	
  sides.	
  LHS	
  vanishes.	
  
•  The	
  pdf’s	
  sa@sfy	
  DGLAP	
  evolu@on	
  equa@on,	
  i.e.	
  the	
  log-­‐deriva@ve	
  w/r	
  to	
  μ	
  of	
  the	
  pdf	
  
	
  	
  	
  	
  	
  	
  is	
  the	
  pdf	
  convoluted	
  with	
  the	
  spli�ng	
  func@on.	
  

The	
  remaining	
  procedure	
  is	
  straigh�orward,	
  and	
  we	
  get:	
  

contribution from the counterterm�s̃

(2)

qq̄,NS

(4.8) cancels in the complete qq̄ ! tt̄+X result, the

point-wise cancellation of the collinear singularities (within the numerical precision) observed

both in this paper and in Ref. [1] serves as an additional check of our setup.

5 Scale dependence

The scale dependent terms �

(1,1)
ij , �

(2,1)
ij and �

(2,2)
ij in Eq. (2.4) can be derived from: a) the

requirement that the measured hadronic cross-section �

tot

in Eq. (2.1) be independent of

the factorization scale µ through NNLO, b) the parton distribution functions fi satisfy the

DGLAP evolution equations, and, c) the known running of the strong coupling constant.

It is again natural to work in terms of the functions s(n(,m))

ij (⇢) ⌘ �

(n(,m))

ij (⇢)/⇢:

s

(1,1)
ij =

1

2⇡

h

2�
0

s

(0)

ij � P

(0)

ki ⌦ s

(0)

kj � s

(0)

ik ⌦ P

(0)

kj

i

, (5.1)

s

(2,2)
ij =

1

(2⇡)2



3�2

0

s

(0)

ij � 5

2
�

0

P

(0)

ki ⌦ s

(0)

kj � 5

2
�

0

s

(0)

ik ⌦ P

(0)

kj

+
1

2
P

(0)

ki ⌦ P

(0)

lk ⌦ s

(0)

lj +
1

2
s

(0)

il ⌦ P

(0)

lk ⌦ P

(0)

kj + P

(0)

ki ⌦ s

(0)

kl ⌦ P

(0)

lj

�

,

s

(2,1)
ij =

1

(2⇡)2

h

2�
1

s

(0)

ij � P

(1)

ki ⌦ s

(0)

kj � s

(0)

ik ⌦ P

(1)

kj

i

+
1

2⇡

h

3�
0

s

(1)

ij � P

(0)

ki ⌦ s

(1)

kj � s

(1)

ik ⌦ P

(0)

kj

i

.

The powers of 1/(2⇡) appearing in the above equations originate in the somewhat uncon-

ventional choice of ↵n
S as the expansion parameter in Eq. (2.4). The expansion of the splitting

functions is as in Eq. (4.3) where �

0

is also defined. The two-loop beta-function coe�cient

reads �
1

= 17C2

A/6� 5CANL/6� CFNL/2.

The scale dependence for any specific reaction can be easily derived from the above

equations. The expression for the qq̄ reaction has been given in Ref. [12]. The scale-dependent

terms for the reaction qq̃ are not available in the literature and we give them here:

s

(2,2)
qq̃ =

1

(2⇡)2

h

s

(0)

qq̄ ⌦ P

(0)

qg ⌦ P

(0)

gq + s

(0)

gg ⌦ P

(0)

gq ⌦ P

(0)

gq

i

,

s

(2,1)
qq̃ = � 2

(2⇡)2
s

(0)

qq̄ ⌦ P

(1)

qq̃
� 2

2⇡
s

(1)

gq ⌦ P

(0)

gq , (5.2)

where the splitting function P

(1)

qq̃
is given in Eq. (4.6) and s

(n)
ij , n = 0, 1 are the finite LO and

NLO coe�cient functions available in analytical form [7].

We have computed all convolutions numerically and produced our own fits for all scaling

functions. We have implemented them in the program Top++ [48]: the ones for the complete

qq̄ reaction in version 1.2 and the ones for the qq, qq

0 and qq̄

0 reactions in version 1.3.

6 Results

We calculate the coe�cient functions �(2)

ij for the reactions (2.5,2.6,2.7,2.8) numerically in a

number of points on the interval � 2 (0, 1). For short, we will sometimes refer to the set

– 7 –

•  To	
  derive	
  the	
  case	
  μF	
  ≠	
  μR	
  we	
  only	
  need	
  to	
  subs@tute	
  the	
  running	
  coupling	
  discussed	
  before.	
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2. – The tt̄ total cross-section: notations

We follow the notation established in Refs. [1-4]. The total inclusive top pair produc-
tion cross-section is defined as

�tot =
X

i,j

Z �
max

0
d� �ij(�, µ

2
F ) �̂ij(↵S(µ

2
R),�,m

2
, µ

2
F , µ

2
R) .(1)

The indices i, j run over all possible initial state partons; �max ⌘ p
1� 4m2

/S;
p
S is

the c.m. energy of the hadron collider and � =
p
1� ⇢, with ⇢ ⌘ 4m2

/s, is the relative
velocity of the final state top quarks with pole mass m and partonic c.m. energy

p
s.

The function � in Eq. (1) is the partonic flux

�ij(�, µ
2
F ) =

2�

1� �

2
Lij

✓
1� �

2
max

1� �

2
, µ

2
F

◆
,(2)

expressed through the partonic luminosity

Lij(x, µ
2
F ) = x (fi ⌦ fj) (x, µ

2
F ) = x

Z 1

0
dy

Z 1

0
dz �(x� yz)fi(y, µ

2
F )fj(z, µ

2
F ) .(3)

As usual, µR,F are the renormalization and factorization scales. Setting µF = µR = µ,
the partonic cross-section can be expanded through NNLO as

�̂ij =
↵

2
S

m

2

(
�

(0)
ij + ↵S

h
�

(1)
ij + L�

(1,1)
ij

i
+ ↵

2
S

h
�

(2)
ij + L�

(2,1)
ij + L

2
�

(2,2)
ij

i)
.(4)

In the above equation L = ln
�
µ

2
/m

2
�
, ↵S is the MS coupling renormalized with NL = 5

active flavors at scale µ

2 and �

(n(,m))
ij are functions only of �.

All partonic cross-sections are known through NNLO [1-4]. The scaling functions

�

(2,1)
ij and �

(2,2)
ij can be computed from �

(1)
ij , see section 3. The dependence on µR 6= µF

can be trivially restored in Eq. (4) by re-expressing ↵S(µF ) in powers of ↵S(µR); see for
example Ref. [6].

3. – Collinear factorization and scale dependence of the partonic cross-section

We follow the setup and notation described in Ref. [2] and denote the collinearly

unrenormalized partonic cross-sections as �̃(n)
ij (", ⇢). Then, introducing the functions s̃(n)ij

and s

(n)
ij defined as s̃(n)ij (", ⇢) ⌘ �̃

(n)
ij (", ⇢)/⇢ and s

(n)
ij (⇢) ⌘ �

(n)
ij (⇢)/⇢, the MS–subtracted

gg-initiated cross-section s

(n)
gg reads through NNLO:

s

(1)
gg = s̃

(1)
gg +

2

✏

✓
1

2⇡

◆
s̃

(0)
gg ⌦ P

(0)
gg ,(5)

s

(2)
gg = s̃

(2)
gg +

✓
1

2⇡

◆2
(

1

"

2

h
��0s̃

(0)
gg ⌦ P

(0)
gg + 2s̃(0)gg ⌦ P

(0)
gg ⌦ P

(0)
gg(6)

Collinear	
  singulari@es.	
  

•  Tops	
  are	
  massive.	
  But	
  due	
  to	
  emission	
  of	
  collinear	
  radia@on	
  from	
  the	
  massless	
  	
  
	
  	
  	
  	
  	
  	
  ini@al	
  state	
  partons	
  (i,j)	
  the	
  resul@ng	
  partonic	
  cross-­‐sec@ons	
  are	
  not	
  finite.	
  	
  
•  For	
  example,	
  in	
  dim	
  reg,	
  they	
  contain	
  a	
  single	
  pole	
  per	
  loop:	
  

	
  
•  This	
  collinear	
  singularity	
  has	
  to	
  be	
  factored	
  out	
  into	
  the	
  ini@al	
  state	
  PDF’s.	
  	
  

	
  
	
  
•  Through	
  NNLO	
  the	
  collinear	
  
	
  	
  	
  	
  	
  	
  counterterms	
  read:	
  
	
  
•  They	
  are	
  process	
  independent!	
  
•  They	
  are	
  scheme	
  dependent!	
  
	
  
	
  
•  Note	
  hat	
  if	
  we	
  consider	
  something	
  like	
  single	
  inclusive	
  top	
  produc@on,	
  then	
  there	
  will	
  also	
  
	
  	
  	
  	
  	
  	
  be	
  collinear	
  singulari@es	
  in	
  the	
  final	
  state.	
  Top	
  fragmenta@on	
  func@ons	
  might	
  be	
  needed	
  if	
  
	
  	
  	
  	
  	
  	
  the	
  top	
  PT	
  become	
  PT>>	
  Mtop	
  (never	
  done	
  so	
  far,	
  but	
  might	
  be	
  needed	
  for	
  the	
  LHC13)	
  

The di↵erences �di↵

" are derived from pure interference 2 diagrams and vanish both at thresh-

old � = 0 and in the high-energy limit � = 1.

The subscript " appearing in Eqs. (3.1,3.2,3.3) emphasizes that these are bare cross-

sections, containing collinear singularities starting from 1/"2. To subtract these singularities

and obtain the finite partonic cross-sections �̂, one needs to perform collinear factorization,

which we describe next.

4 Collinear factorization

The description of the collinear factorization deserves some attention since for the reactions

considered in this paper it has not been spelled out in the literature. Moreover, the collinear

factorization for the reaction (2.5) represents a nonstandard contribution to the reaction

qq̄ ! tt̄ + X and, for consistency, was suppressed in Ref. [1]. We take the opportunity to

describe it in this work.

In the notation of Eq. (2.4), and setting µ = m, the bare partonic cross-sections read

�̃ij(✏, ⇢) =
↵

2

S

m

2

n

�̃

(0)

ij (✏, ⇢) + ↵S �̃
(1)

ij (✏, ⇢) + ↵

2

S �̃
(2)

ij (✏, ⇢) + . . .

o

. (4.1)

They are defined in d = 4�2" dimensions and expressed in terms of the dimensionless variable

⇢ = 4m2

/s = 1 � �

2. To obtain the finite MS-subtracted partonic cross-sections �̂ij(⇢) one

has to factor out the initial state collinear singularities: 3

�̃ij(✏, ⇢)

⇢

=
X

k,l



�̂kl(x)

x

⌦ �ki ⌦ �lj

�

(⇢) . (4.2)

The MS collinear counterterms � are expressed through the space-like splitting functions

P

(n)
ij , defined as an expansion in (↵S/(2⇡))n. Through NNLO we have:

�ij(✏, x) = �ij�(1� x) + ↵S�
(1)

ij (✏, x) + ↵

2

S�
(2)

ij (✏, x) , (4.3)

�(1)

ij (✏, x) = � 1

2⇡

P

(0)

ij (x)

✏

,

�(2)

ij (✏, x) =

✓

1

2⇡

◆

2

(

1

2✏2

h

P

(0)

ik ⌦ P

(0)

kj (x) + �

0

P

(0)

ij (x)
i

� 1

2✏
P

(1)

ij (x)

)

,

with �

0

= 11CA/6�NL/3 and ↵S the renormalized coupling at scale µR.

2 By interference diagrams we mean squared diagrams where a final state parton connects not to itself but

to a di↵erent parton in the complex conjugate diagram. Clearly this is only possible if there are at least two

identical partons in the final state.
3We note a typo in Eq.(7) of Ref. [7], where � and �̂ have been exchanged. This typo does not a↵ect the

rest of Ref. [7].
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Calcula@on	
  of	
  the	
  partonic	
  cross-­‐sec@ons:	
  

No	
  fully	
  developed	
  methods	
  exist	
  that	
  can	
  handle	
  in	
  unified	
  way	
  all	
  aspects	
  of	
  	
  
any	
  massive	
  calcula@on	
  through	
  NNLO.	
  The	
  working	
  approach	
  of	
  today	
  is:	
  
	
  
	
  
•  Compute	
  all	
  pieces	
  numerically,	
  and	
  separately,	
  as	
  IR	
  divergent	
  quan@@es.	
  
•  Then	
  add	
  them	
  up.	
  
•  Make	
  all	
  checks,	
  especially	
  verify	
  the	
  cancella@on	
  of	
  all	
  singulari@es	
  	
  
	
  	
  	
  	
  	
  	
  (a~er	
  collinear	
  factoriza@on)	
  	
  

As	
  any	
  NNLO	
  calcula@on,	
  there	
  are	
  3	
  principle	
  contribu@ons:	
  



There	
  are	
  3	
  principle	
  contribu@ons:	
  
	
  
	
  

ü 	
  2-­‐loop	
  virtual	
  correc@ons	
  (V-­‐V)	
  	
  
	
  	
  	
  	
  	
  	
  
	
  

ü 	
  1-­‐loop	
  virtual	
  with	
  one	
  extra	
  parton	
  (R-­‐V)	
  

ü 	
  2	
  extra	
  emiced	
  partons	
  at	
  tree	
  level	
  (R-­‐R)	
  

And	
  2	
  secondary	
  contribu@ons:	
  
	
  

ü 	
  Collinear	
  subtrac@on	
  for	
  the	
  ini@al	
  state	
  
	
  	
  	
  	
  	
  
ü 	
  One-­‐loop	
  squared	
  amplitudes	
  (analy@c)	
  

Korner,	
  Merebashvili,	
  Rogal	
  `07	
  
Anastasiou,	
  Mert-­‐Aybot	
  `08	
  

Known,	
  in	
  principle.	
  Done	
  numerically.	
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Weinzierl	
  `11	
   May	
  be	
  avoided?	
  



ü 	
  A	
  wonderful	
  result	
  By	
  M.	
  Czakon	
  

	
  
ü 	
  The	
  method	
  is	
  general	
  (also	
  to	
  other	
  processes,	
  differen@al	
  kinema@cs,	
  etc).	
  

ü 	
  Explicit	
  contribu@on	
  to	
  the	
  total	
  cross-­‐sec@on	
  given.	
  

ü Used	
  now	
  in	
  a	
  number	
  of	
  NNLO	
  processes:	
  cbar,	
  single	
  top,	
  Higgs+jet	
  

Czakon	
  `10-­‐11	
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Czakon,	
  Fiedler,Mitov	
  
Boughezal,	
  Caola,	
  Melnikov,	
  Petriello,	
  Schulze	
  ’13	
  
Brucherseifer,	
  Caola,	
  Melnikov	
  ‘14	
  

•  The	
  single	
  most	
  important	
  piece	
  is	
  how	
  to	
  handle	
  the	
  double-­‐real	
  contribu@ons	
  
	
  	
  	
  	
  	
  	
  (i.e.	
  to	
  integrate	
  over	
  the	
  phase	
  space	
  of	
  the	
  two	
  unobserved	
  partons)	
  
	
  
Recall:	
  the	
  matrix	
  elements	
  are	
  tree-­‐level	
  (and	
  thus	
  finite)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  phase	
  space	
  integra@on	
  is	
  singular	
  (so~	
  and/or	
  collinear	
  logs)	
  and	
  produces	
  terms	
  ~1/ε4	
  





•  This	
  has	
  been	
  an	
  extremely	
  fer@le	
  and	
  useful	
  field.	
  	
  
•  Helps	
  in	
  our	
  understanding	
  of	
  QCD	
  at	
  higher	
  orders	
  and	
  non-­‐perturba@ve	
  phenomena.	
  	
  
•  Very	
  limited	
  kinema@cal	
  applicability:	
  certain	
  phase-­‐space	
  regions	
  need	
  it,	
  most	
  do	
  not.	
  

What	
  is	
  threshold?	
  

•  Kinema@cal	
  configura@on	
  where	
  all	
  the	
  partonic	
  energy	
  is	
  taken	
  by	
  the	
  top	
  pair	
  and	
  very	
  	
  
	
  	
  	
  	
  	
  	
  licle,	
  if	
  any,	
  energy	
  is	
  le~	
  for	
  radia@on.	
  	
  

•  Dis@nguish	
  “absolute	
  threshold”	
  and	
  “threshold”:	
  

•  Absolute	
  threshold	
  is	
  a	
  par@cular	
  case	
  of	
  a	
  threshold,	
  where	
  almost	
  all	
  the	
  partonic	
  	
  
	
  	
  	
  	
  	
  	
  energy	
  is	
  used	
  to	
  produce	
  the	
  tops	
  at	
  rest.	
  

•  Absolute	
  threshold	
  kinema@cs	
  is	
  relevant	
  for	
  the	
  resumma@on	
  of	
  the	
  total	
  x-­‐sec@on.	
  

•  General	
  threshold	
  resumma@on	
  is	
  needed	
  for	
  differen@al	
  observables	
  

•  The	
  two	
  types	
  are	
  related;	
  absolute	
  threshold	
  resumma@on	
  can	
  be	
  obtained	
  from	
  the	
  	
  
	
  	
  	
  	
  	
  	
  differen@al	
  case	
  by	
  integra@ng	
  over	
  the	
  phase	
  space	
  and	
  then	
  taking	
  the	
  limit	
  βà0.	
  

See	
  Czakon,	
  Mitov,	
  Sterman	
  ‘09	
  for	
  the	
  detailed	
  procedure	
  



•  Important	
  subtle	
  point:	
  if	
  a	
  resumma@on	
  is	
  done	
  at	
  the	
  differen@al	
  level,	
  and	
  then	
  	
  
	
  	
  	
  	
  	
  	
  numerically	
  integrate	
  over	
  the	
  phase	
  space,	
  the	
  result	
  will	
  differ	
  from	
  the	
  one	
  done	
  in	
  	
  
	
  	
  	
  	
  	
  	
  absolute	
  threshold	
  resumma@on	
  due	
  to	
  subleading	
  terms.	
  In	
  other	
  words,	
  the	
  	
  
	
  	
  	
  	
  	
  	
  leading	
  terms	
  in	
  the	
  threshold	
  limit	
  will	
  be	
  correctly	
  resummed,	
  but	
  in	
  one	
  case	
  subleading	
  
	
  	
  	
  	
  	
  	
  terms	
  would	
  also	
  come	
  along.	
  

•  This	
  is	
  a	
  an	
  important	
  issue	
  since	
  these	
  subleading	
  terms	
  are	
  typically	
  not	
  small	
  numerically	
  
	
  	
  	
  	
  	
  	
  so	
  their	
  inclusion	
  affects	
  the	
  results	
  significantly.	
  	
  

•  This	
  has	
  led	
  to	
  many	
  discussions	
  in	
  the	
  past,	
  some@mes	
  quite	
  animated;	
  no	
  consensus	
  has	
  	
  
	
  	
  	
  	
  	
  	
  been	
  reached	
  in	
  the	
  literature.	
  

•  The	
  good	
  news:	
  with	
  NNLO	
  +	
  resumma@on	
  precision,	
  the	
  effects	
  of	
  the	
  	
  
	
  	
  	
  	
  	
  	
  resumma@on	
  becomes	
  less	
  important,	
  so	
  these	
  differences	
  become	
  more	
  marginal.	
  



•  Threshold	
  resumma@on,	
  in	
  top	
  or	
  otherwise,	
  has	
  tradi@onally	
  been	
  done	
  in	
  the	
  so-­‐called	
  	
  
	
  	
  	
  	
  	
  	
  Mellin	
  space	
  approach	
  (since	
  mid-­‐1990’s)	
  

•  In	
  the	
  last	
  5-­‐6	
  years	
  SCET	
  has	
  also	
  been	
  extensively	
  used	
  for	
  performing	
  so~-­‐gluon	
  	
  
	
  	
  	
  	
  	
  	
  resumma@on	
  in	
  top	
  pair	
  produc@on.	
  	
  

Kidonakis,	
  Sterman	
  
Bonciani,	
  Catani,	
  Mangano,	
  Nason	
  

Beneke,	
  Falgari,	
  Scwinn	
  
Ferroglia,	
  Neubert,	
  Pecjak,	
  Yang	
  

There	
  are	
  many	
  differences;	
  almost	
  all	
  are	
  technical.	
  The	
  essen@als	
  are:	
  

•  One	
  of	
  them	
  works	
  in	
  N-­‐space,	
  the	
  other	
  in	
  x-­‐space.	
  
•  To	
  leading	
  power	
  both	
  approaches	
  agree;	
  differences	
  at	
  subleading	
  terms	
  (could	
  be	
  large)	
  
•  There	
  is	
  a	
  belief	
  (unclear	
  if	
  it	
  is	
  correct)	
  that	
  the	
  x-­‐space	
  approach,	
  unlike	
  the	
  N-­‐space	
  one,	
  	
  
	
  	
  	
  	
  	
  	
  allows	
  MC	
  implementa@on	
  of	
  resumma@on.	
  The	
  idea	
  is	
  to	
  eventually	
  have	
  a	
  fully	
  differen@al	
  
	
  	
  	
  	
  	
  	
  so~	
  gluon	
  resumma@on.	
  

•  If	
  this	
  can	
  be	
  done,	
  or	
  not,	
  is	
  for	
  the	
  future	
  to	
  show.	
  It	
  is	
  a	
  nice	
  open	
  problem.	
  
See	
  recent	
  work:	
  Broggio,	
  Papanastasiou,	
  Signer	
  ‘14	
  



Here	
  is	
  how	
  so~-­‐gluon	
  resumma@on	
  is	
  done	
  (in	
  the	
  case	
  of	
  N-­‐space)	
  

ü  Iden@fy	
  the	
  threshold	
  kinema@cs.	
  Introduce	
  a	
  variable	
  z,	
  such	
  that	
  the	
  threshold	
  is	
  zà1.	
  
	
  Examples:	
  

•  	
  total	
  cross-­‐sec@on: 	
  	
  
•  Differen@al	
  case:	
  	
  

	
  
ü  	
  Introduce	
  a	
  dual	
  Mellin	
  variable	
  (threshold	
  is	
  now	
  the	
  limit	
  Nà∞).	
  The	
  leading	
  power	
  
	
  	
  	
  	
  	
  	
  	
  	
  behavior	
  is	
  simple:	
  

ü  	
  In	
  the	
  so~	
  limit	
  Nà∞	
  the	
  partonic	
  cross-­‐sec@on	
  factorizes	
  

2

II. THRESHOLD RESUMMATION AT FIXED KINEMATICS

In this section, we review the threshold resummation formalism of Ref. [5], which is adapted to semi-inclusive
reactions characterized by fixed partonic scattering kinematics, as in for example,

f1(p1) + f2(p2) → fa(pa) + fb(pb) , (1)

where fi(pi) denotes a parton of flavor fi and momentum pi. We have shown a 2 → 2 process, but final states with
more than two particles are also possible, so long as all invariants pi · pj are large. The formalism we sketch in this
section applies to processes involving light quarks and gluons, and also to the production of heavy quarks. In the
latter case, we can also study the inclusive cross section, for which threshold resummation has been developed from a
related point of view [4]. In Section III we will derive resummed inclusive cross sections for heavy quark production
from their semi-inclusive forms.

A. Factorization near partonic threshold

Our starting point for the resummation of observables involving initial and/or final state hadrons is the formalism
of Ref. [5]. To be specific, we restrict our discussion to the 2 → 2 processes of Eq. (1), although many of our
considerations can be directly generalized. For the production of a pair of particles with mass m, the kinematics can
be described by the invariant mass M and rapidity y of the partonic final state and the pair center-of-mass rapidity
difference η̂. Assuming that m ≫ ΛQCD, this cross section can be written in standard factorized form as

M4 dσh1h2→QQ̄

dM2dydη̂
=
∑

f

∫ 1

τ
dz

∫

dxa

xa

dxb

xb
φf/h1

(xa, µ2)φf̄/h2
(xb, µ

2)

× δ

(

z − τ

xaxb

)

δ

(

y − 1

2
ln

xa

xb

)

× ωff̄→QQ̄

(

z, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

, (2)

where we have normalized the cross section so that all quantities are dimensionless. The purpose of threshold
resummation is to organize plus distributions in the variable

z =
τ

xaxb
=

M2

xaxbS
, (3)

with xa and xb the usual fractional momenta. Partonic threshold is defined as the limit z → 1, at which the incoming
partons provide just enough energy to produce the observed final state. The mismatch between real gluon emission
and virtual corrections gives rise to singular distributions at z = 1. These distributions appear in the nth order
expansion of the perturbative function ωff̄→QQ̄ up to the level of αn

s [ln2n−1(1 − z)/(1 − z)]+.
In Ref. [5], it was observed that as z → 1, partonic cross sections can be factorized into a set of universal factors

associated with the incoming and outgoing partons of the underlying process, along with process-dependent factors
that describe the coherent interactions of those partons, at short and long distances. The resummed dependence in
1 − z is conveniently generated by taking Mellin moments with respect to z, schematically,

σ(N) =

∫ 1

0
dzzN−1σ(z)

=

∫ 1

0
dze−(N−1)(1−z)σ(z) + O(1/N) . (4)

For example, in the inclusive Drell-Yan process, the corresponding kinematical variable is z = Q2/s, where s is the
partonic c.m. energy [3]. For resummation of the total inclusive cross section of heavy quark pair production at hadron
colliders the corresponding variable is z = 4m2/s where m is the mass of the top quark. Another example relevant
for this paper is the invariant mass M2

tt̄ = (pt + pt̄)
2 distribution of a top quark-antiquark pair; the relevant partonic

variable is z = M2
tt̄/s. In any case we assume that the partonic variable is defined such that threshold kinematics is

attained in the limit z → 1. In moment space this corresponds to the limit N → ∞. The analysis of Ref. [5] exploits
factorization near threshold, according to which the cross section can be written as a convolution in an appropriate
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momentum component of the soft radiation associated with a set of functions [9]. In threshold resummation for
hadronic collisions, this component is the energy, E∗

i , of each final-state particle in the center-of-mass frame of the
hard collision. That is, for any threshold resummation at hadronic collisions, we can identify

1 − z =
∑

particles i

2E∗
i√
s

, (5)

where the partonic variable s ≡ xaxbS equals M2 at threshold, with M the invariant mass of the observed pair of heavy
particles. The cross section then factorizes into simple products in the corresponding moment space. Dependence on
the moment variable enters only through the transform, and is therefore always in the form N/M , up to corrections
that decrease as powers of N .

As a result of this analysis, the partonic cross section takes a factorized form in moment space, which we can
represent as

ωP

(

N, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

= J1(N, αs(µ
2)) . . . Jk(N, M/µ, m/µ, αs(µ

2))

× Tr

[

H
P

(

M2

µ2
,
m2

µ2
, η̂, αs(µ

2)

)

S
P

(

N2µ2

M2
,
M2

m2
, η̂, αs(µ

2)

)]

+ O(1/N) , (6)

where the label P refers to a particular partonic process, for example qq̄ → tt̄, with q a light flavor. The Mellin
moment N is conjugate to the kinematical variable z. As shown, the various functions appearing in Eq. (6) depend
on other kinematical variables and masses as well as the factorization and renormalization scales. These functions
depend on the specific process. Below, we will give them more explicitly in the specific examples considered here. We
will refer to the factors Ji appearing in Eq. (6) as the jet functions for the underlying process. They are color diagonal
functions that describe the factorized dynamics of initial and/or final state hard partons, whether massive or massless,
and as such are independent of the details of the hard subprocess. Jet functions for initial-state partons absorb the
collinear subtractions necessary to define the hard scattering function ω in Eq. (6), so that they are infrared safe. Jet
functions for final-state partons are automatically infrared safe for the differential and inclusive cross sections that
we discuss here. The formalism can be extended as well to a variety of jet observables and to single-hadron cross
sections. The number k of such functions in Eq. (6) corresponds to the number of hard colored partons in the process
being considered.

The functions H and S appearing in Eq. (6) are known as hard and soft functions, respectively. They are both
matrices in the space of tensors that describe the exchange of color at short distances [5]. Examples for quark-
antiquark scattering are color singlet or octet in the s- or t-channel. We will denote these tensors in boldface, and
their product is traced over the combinations of color tensors in the amplitude and its complex conjugate. In the limit
N → ∞ the hard function H is free of logarithmic dependence on N ; it is obtained from a dedicated, process-specific
calculation.

B. Moment-dependence and the soft anomalous dimension matrix

The soft function S contains terms due to wide-angle soft emissions and thus contributes a single power of ln(N)
per loop. It is also process dependent, and in the general case is dependent on the four-velocities {βi} of the partons
that take part in the hard scattering. For processes involving four or more colored hard partons it is a matrix in
the space of color tensors. Assuming fixed-angle scattering, the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we will take to be M , the invariant mass of the pair for the
case of heavy quark production. For a massive quark of velocity βq, we shall set β2

q = m2
q/M

2, and for most of this
discussion, treat this ratio as a number of order unity.

As noted above, all N -dependence is of the form N/M . As a result, in the dimensionless soft function, N -dependence
appears only in the combination M/(Nµ). In Ref. [5], it was shown that the N -dependence of the soft function
S(N, . . . ) entering the cross section Eq. (6) can be made explicit in terms of a “soft anomalous dimension matrix”,



3

momentum component of the soft radiation associated with a set of functions [9]. In threshold resummation for
hadronic collisions, this component is the energy, E∗

i , of each final-state particle in the center-of-mass frame of the
hard collision. That is, for any threshold resummation at hadronic collisions, we can identify

1 − z =
∑

particles i

2E∗
i√
s

, (5)

where the partonic variable s ≡ xaxbS equals M2 at threshold, with M the invariant mass of the observed pair of heavy
particles. The cross section then factorizes into simple products in the corresponding moment space. Dependence on
the moment variable enters only through the transform, and is therefore always in the form N/M , up to corrections
that decrease as powers of N .

As a result of this analysis, the partonic cross section takes a factorized form in moment space, which we can
represent as

ωP

(

N, η̂,
M2

µ2
,
m2

µ2
, αs(µ

2)

)

= J1(N, αs(µ
2)) . . . Jk(N, M/µ, m/µ, αs(µ

2))

× Tr

[

H
P

(

M2

µ2
,
m2

µ2
, η̂, αs(µ

2)

)

S
P

(

N2µ2

M2
,
M2

m2
, η̂, αs(µ

2)

)]

+ O(1/N) , (6)

where the label P refers to a particular partonic process, for example qq̄ → tt̄, with q a light flavor. The Mellin
moment N is conjugate to the kinematical variable z. As shown, the various functions appearing in Eq. (6) depend
on other kinematical variables and masses as well as the factorization and renormalization scales. These functions
depend on the specific process. Below, we will give them more explicitly in the specific examples considered here. We
will refer to the factors Ji appearing in Eq. (6) as the jet functions for the underlying process. They are color diagonal
functions that describe the factorized dynamics of initial and/or final state hard partons, whether massive or massless,
and as such are independent of the details of the hard subprocess. Jet functions for initial-state partons absorb the
collinear subtractions necessary to define the hard scattering function ω in Eq. (6), so that they are infrared safe. Jet
functions for final-state partons are automatically infrared safe for the differential and inclusive cross sections that
we discuss here. The formalism can be extended as well to a variety of jet observables and to single-hadron cross
sections. The number k of such functions in Eq. (6) corresponds to the number of hard colored partons in the process
being considered.

The functions H and S appearing in Eq. (6) are known as hard and soft functions, respectively. They are both
matrices in the space of tensors that describe the exchange of color at short distances [5]. Examples for quark-
antiquark scattering are color singlet or octet in the s- or t-channel. We will denote these tensors in boldface, and
their product is traced over the combinations of color tensors in the amplitude and its complex conjugate. In the limit
N → ∞ the hard function H is free of logarithmic dependence on N ; it is obtained from a dedicated, process-specific
calculation.
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The soft function S contains terms due to wide-angle soft emissions and thus contributes a single power of ln(N)
per loop. It is also process dependent, and in the general case is dependent on the four-velocities {βi} of the partons
that take part in the hard scattering. For processes involving four or more colored hard partons it is a matrix in
the space of color tensors. Assuming fixed-angle scattering, the soft function depends on the scalar products of these
velocities, in addition to a single overall scale, which we will take to be M , the invariant mass of the pair for the
case of heavy quark production. For a massive quark of velocity βq, we shall set β2

q = m2
q/M

2, and for most of this
discussion, treat this ratio as a number of order unity.

As noted above, all N -dependence is of the form N/M . As a result, in the dimensionless soft function, N -dependence
appears only in the combination M/(Nµ). In Ref. [5], it was shown that the N -dependence of the soft function
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ΓS . Making the natural choice, µ = M , we have

S

(

N2µ2

M2
, βi · βj , αs(µ

2)

)

∣

∣

∣

∣

∣

µ=M

= P exp

{

−
∫ M

M/N̄

dµ′

µ′
Γ
†
S

(

βi · βj , αs

(

µ′2
))

}

×S
(

1, βi · βj , αs

(

M2/N̄2
))

×P exp

{

−
∫ M

M/N̄

dµ′

µ′
ΓS

(

βi · βj , αs

(

µ′2
))

}

= P exp

{

∫ 1

0
dx

xN−1 − 1

1 − x
Γ
†
S

(

βi · βj , αs

(

(1 − x)2M2
))

}

×S
(

1, βi · βj , αs

(

M2/N2
))

×P exp

{

∫ 1

0
dx

xN−1 − 1

1 − x
ΓS

(

βi · βj , αs

(

(1 − x)2M2
))

}

, (7)

where the second expression is accurate to next-to-next-to leading logarithms (i.e. terms ∼ αn
s lnn−1 N in the cross

section) for N̄ = NeγE , with γE the Euler constant. Throughout this paper αs = αs(µ2) is the standard MS coupling
evolving with NL light flavors. Decoupling of the heavy flavor will simplify our results significantly. The relation
between the bare αb

s and renormalized couplings reads

αb
sSϵ = αs(µ

2)

[

1 − β0

4ϵ

αs(µ2)

π
+ O(α2

s)

]

, (8)

where Sϵ = (4π)ϵ exp(−ϵγE) and β0 = (11/3)CA − (4/3)TF NL. The color factors in an SU(N)-gauge theory are
CA = N , CF = (N2 − 1)/(2N) and TF = 1/2.

The structure of Eq. (7) follows from the renormalization group equation satisfied by the soft function
S(N2µ2/M2, . . . ), where ΓS plays the role of a matrix of anomalous dimensions [5]. The function S(1, . . . ) plays
the role of a boundary condition, which is chosen to be the soft function at unit N , that is, with unit weight. In
general, this factor contributes a single ln(N) starting from two loops, which is due, however, entirely to the presence
of N in the scale of the running coupling in its one-loop expression. To determine this contribution one need only
calculate the soft function in Eq. (6) through one loop.

At N = 1, the computation of the soft function is given by a total eikonal cross section, subtracted for eikonal
jet functions to eliminate collinear enhancements [5]. In the formalism of Ref. [5], virtual corrections are pure
counterterms, because the corresponding eikonal diagrams are scaleless and vanish in dimensional regularization. In
the full soft function, however, the hard scale sets a maximum total energy for the soft function at N = 1, and
the corresponding integrals are not scaleless. Their infrared poles are cancelled by the virtual diagrams, but finite
corrections may remain.

In summary, the soft function S at N = 1 takes the form

S
(

1, βi · βj , αs

(

M2/N2
))

= S
(0) +

αs

(

M2/N2
)

π
S

(1) (1, βi · βj) + . . . , (9)

where S(0) is a constant diagonal matrix independent of the coupling and S(1) (1, βi · βj) is free of dependence on N ,
but can depend on the eikonal velocities that define the soft function. Explicit expressions for S(0) relevant to heavy
quark production can be found in [10]. We will give the one-loop correction below, after specifying a scheme that
defines the soft function unambiguously. At this stage, we note that to compute the soft function fully at next-to-
next to leading logarithm it is necessary to compute the two-loop anomalous dimension matrix and the one-loop soft
function.

C. The form factor scheme

The soft function is not unique, but is ambiguous at the level of single logarithmic contributions that can be
absorbed into the jet functions. These ambiguities, must be proportional to the unit matrix in the color exchange
space (since the jet functions are diagonal in color). To resolve this ambiguity one has to specify a prescription for
the definition of the anomalous dimension matrix ΓS , which we discuss next.
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Figure 2: Example graphs with contributions from both the ultrasoft (gluons depicted with wavy lines) and potential
(gluons depicted with dashed lines) regions. The crosses denote effective interactions, the structure of which is
irrelevant to the argument of the text.

denominator containing a combination of a potential and an ultrasoft momentum, the ultrasoft
momentum will be (multipole) expanded. Therefore, the denominators containing potential three-
momenta will not depend on the direction of any external three-momentum (unlike denominators
containing an ultrasoft three-momentum). In consequence, rotational invariance implies that all
integrals with an odd number of potential three-momenta in the numerator vanish. Thus, given
a term with a specified power of β, the next higher-order contribution will be suppressed by a
relative factor of β2, smaller than the terms we seek.

Next, regarding the subleading soft-gluon couplings to the initial state, the relevant expan-
sion is one in transverse momentum. The effective Lagrangian for the corrections to the eikonal
approximation is given in soft-collinear effective theory by ξ̄

(

xµ
⊥nν

− Wc gF us
µνW †

c

) n̸+

2 ξ for quarks
[32, 33], and similar terms involving transverse derivatives or factors of x⊥ for the couplings to
collinear gluons, and of soft quarks. None of these terms can contribute a beta-suppressed term,
since the initial-state momenta in Fig. 2 can always be chosen to have zero transverse momen-
tum, implying that loop integrals with transverse-momentum factors in the numerator vanish by
arguments similar to those applied to the heavy-quark couplings. This completes the proof, that
we have correctly taken into account all possible sources of singular terms in the expansion of the
cross sections for heavy-quark pair production at NNLO by including the extra terms from the
non-Coulomb potentials.

Note that some of the cuts of Fig. 2 correspond to three-particle colour correlations at the
amplitude level, for which the infrared divergence structure has recently been given in Ref. [13].
The latter work shows that the infrared-singular three-particle correlations may not vanish in
the limit β → 0 in the amplitude, but that they do in the virtual contributions to the total
cross section at NNLO in the particular case of top quarks because of colour projections [12, 13].
Our arguments above prove that there are no contributions to the lnβ terms from three-particle
correlations in both, the virtual and real corrections. This holds independent of particular colour
representations for purely kinematic reasons.

3. Results

Next we present the main result of this paper, namely the expansion of the two-loop partonic cross
section close to the partonic threshold β = 0. As we emphasized above, our result is complete up to

the so-called constant terms2 C(2)
qq̄ , C(2)

gg,1, C(2)
gg,8. Their derivation requires a dedicated calculation

that goes beyond the scope of the present work. Setting µR = µF = µ, the result for the total
cross-section close to threshold reads:

σij,I(β, µ, m) = σ(0)
ij,I

{

1 +
αs(µ2)

4π

[

σ(1,0)
ij,I + σ(1,1)

ij,I ln

(

µ2

m2

)]

(4)

+

(

αs(µ2)

4π

)2 [

σ(2,0)
ij,I + σ(2,1)

ij,I ln

(

µ2

m2

)

+ σ(2,2)
ij,I ln2

(

µ2

m2

)]

+ O(α3
s)

}

,

2This standard terminology is somewhat misleading in this process. Due to the non-trivial β dependence of the
Born cross section, the contribution of the “constant” term to the cross section is, in fact, proportional to β.
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colour-state specific components given above, one has to first multiply the two-loop contributions

Eqs. (5,7) and (6) by, respectively, σ(0)
ij,8 and σ(0)

ij,1 (see Eq. (4)), and then add them together. The
singlet/octet Born terms can be found in Appendix B. Finally, by setting µ = m, all colour factors
to their numerical values, and nl = 5 as applicable to top-quark production, we get the following
result for the colour-averaged total inclusive cross-section close to partonic threshold:

σ(2)
qq̄ =

3.60774

β2
+

1

β

(

− 140.368 ln2 β + 32.106 lnβ + 3.95105
)

+910.222 ln4 β − 1315.53 ln3 β + 592.292 ln2 β + 528.557 lnβ + C(2)
qq ,

σ(2)
gg =

68.5471

β2
+

1

β

(

496.3 ln2 β + 321.137 lnβ − 8.62261
)

+4608 ln4 β − 1894.91 ln3 β − 912.349 ln2 β + 2456.74 lnβ + C(2)
gg , (8)

which differs in the coefficients of the 1/β and lnβ terms from the expressions given in [23] for
the reasons mentioned in section 2.

In conclusion, the above formulae contain all velocity-enhanced terms in the total hadronic pro-
duction of heavy quarks at NNLO near the partonic threshold. A compact general result for the
velocity-enhanced terms in the production of equal-mass heavy-particle pairs in the collisions of
massless particles for arbitrary colour representations is provided in appendix A.
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Appendix A. A formula for arbitrary representations

Here we provide the velocity-enhanced terms at NNLO for the production of a pair of heavy
particles with equal mass m in the scattering of massless partons in colour representations r
and r′, respectively, under the assumption that the Born cross section (which is factored out
as in Eq. (4)) admits an S-wave term proportional to β. The heavy-particle pair is in colour
representation Rα and a definite spin state. The threshold expansion reads

σ(2)
X =

4π4D2
Rα

3β2
+

π2DRα

β

{

(−8) (Cr + Cr′)

[

ln2

(

2mβ2

µ

)

−
π2

8

]

+ 2 (β0 + 4CRα
) ln

(

2mβ2

µ

)

− 8CRα
− 2a1 − 4 Re [C(1)

X ] + 2β0 ln

(

2m

µ

) }

+ 128 (Cr + Cr′)2 ln4 β + 64 (Cr + Cr′)

{

4 (Cr + Cr′) (L8 − 2) −
β0

3
− 2CRα

}

ln3 β

+

{

8

3
(Cr + Cr′)2

[

72L2
8 − 288L8 + 576 − 35π2

]

+
16

9
(Cr + Cr′)

[

18 Re [C(1)
X ]

+ 18β0 (−L8 + 2) + 36CRα
(−3L8 + 7) + CA(67 − 3π2) − 20nlTf

]

+ 16CRα
(β0 + 2CRα

)

}

ln2 β

+

{

8 (Cr + Cr′)2
[

8L3
8 − 48L2

8 +

(

192 −
35π2

3

)

L8 − 384 +
70π2

3
+ 112ζ3

]
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where:	
  

where I = 1,8 is a colour index and ij = (qq̄, gg), whereas αs(µ2) is defined in the MS scheme
with nl (number of massless quarks) flavours. The derivation of the coefficients of lnn(µ2/m2)
with n = 1, 2 from one-loop results and splitting functions is given in Appendix B. The non-trivial

scale-independent two-loop contributions σ(2,0)
ij,I read:

σ(2,0)
qq̄,8 =

(2CF − CA)2π4

3β2
+

(2CF − CA)π2

9β

[

288CF ln2 β + 6
(

48CF ln 2 − 23CA + 2nl

)

lnβ

+12CF

(

− 24 + 9 ln 2 + π2
)

+ 3CA

(

89 − 58 ln2 − 3π2
)

+ 6nl

(

− 5 + 6 ln 2
)

− 32
]

+512C2
F ln4 β +

128

9
CF

[

72CF

(

− 2 + 3 ln 2
)

− 29CA + 2nl

]

ln3 β

+
16

9

[

2CF

(

12CF (120 − 207 ln 2 + 156 ln2 2 − 7π2) + 3CA(217 − 198 ln 2 − 4π2)

+6nl(−9 + 10 ln 2) − 32
)

+ 3CA(17CA − 2nl)
]

ln2 β

+
8

27

[

2CF

(

18CF (−960 + ln 2(1368− 84π2) − 1140 ln2 2 + 576 ln3 2 + 55π2 + 336ζ3)

+CA(−7582 + 108 ln2(115 − 2π2) − 5886 ln2 2 + 360π2 + 189ζ3)

+2nl(338 − 630 ln 2 + 378 ln2 2 − 9π2) + 192(2 − 3 ln 2)
)

+3CA

(

3CA(−185 + 126 ln2 + 6π2 − 6ζ3) + 6nl(11 − 10 ln 2) + 32
)

]

lnβ + C(2)
qq̄ , (5)

σ(2,0)
gg,1 =

4C2
F π4

3β2
+

2CF π2

9β

[

288CA ln2 β + 6
(

CA(−11 + 48 ln 2) + 2nl

)

lnβ

+9CF

(

− 20 + π2
)

+ CA

(

67 − 66 ln 2 + 3π2
)

+ 2nl

(

− 5 + 6 ln 2
)

]

+ 512C2
A ln4 β

+
128

9
CA

[

CA

(

− 155 + 216 ln2
)

+ 2nl

]

ln3 β +
32

9
CA

[

9CF

(

− 20 + π2
)

+CA

(

1963− 2790 ln2 + 1872 ln2 2 − 96π2
)

+ 2nl

(

− 17 + 18 ln 2
)

]

ln2 β

+
16

27

[

27CF

(

− 2CF π2 + CA(80 + 6 ln 2(−20 + π2) − 5π2)
)

+ CA

(

CA(−23758

+18 ln2(1963− 96π2) − 24246 ln2 2 + 10368 ln3 2 + 1251π2 + 6237ζ3)

+2nl(218 − 306 ln 2 + 162 ln2 2 − 9π2)
)

]

lnβ + C(2)
gg,1 , (6)

σ(2,0)
gg,8 =

(2CF − CA)2π4

3β2
+

(2CF − CA)π2

18β

[

576CA ln2 β + 12
(

CA(−23 + 48 ln 2) + 2nl

)

lnβ

+18CF

(

− 20 + π2
)

+ CA

(

278 − 132 ln 2 − 3π2
)

+ 4nl

(

− 5 + 6 ln 2
)

]

+ 512C2
A ln4 β

+
128

9
CA

[

CA

(

− 173 + 216 ln2
)

+ 2nl

]

ln3 β +
16

9
CA

[

18CF

(

− 20 + π2
)

+CA

(

4553− 6156 ln2 + 3744 ln2 2 − 201π2
)

+ 2nl

(

− 37 + 36 ln2
)

]

ln2 β

+
4

27

[

54CF

(

− 4CF π2 + CA(180 + 12 ln 2(−20 + π2) − 7π2)
)

+ CA

(

CA(−111418

+36 ln2(4499− 201π2) − 105624 ln2 2 + 41472 ln3 2 + 5823π2 + 24840ζ3)

+4nl(505 − 666 ln 2 + 324 ln2 2 − 18π2)
)

]

lnβ + C(2)
gg,8 . (7)

In order to construct the two-loop correction to the colour-averaged cross section from the
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Warning:	
  the	
  reliability	
  of	
  such	
  approaches	
  in	
  approxima@ng	
  the	
  full	
  result	
  is	
  ques@onable.	
  
Comparisons	
  with	
  exact	
  results	
  show	
  that	
  subleading	
  terms	
  could	
  indeed	
  be	
  numerically	
  large.	
  

•  Another	
  subtlety:	
  in	
  top	
  produc@on,	
  there	
  is	
  another	
  effect	
  that	
  lives	
  close	
  to	
  threshold	
  	
  
	
  	
  	
  	
  	
  	
  (i.e.	
  same	
  kinema@cs,	
  different	
  physics):	
  bound	
  state	
  forma@on.	
  
	
  
•  These	
  produce	
  addi@onal	
  power	
  singulari@es	
  in	
  the	
  threshold	
  region	
  (i.e.	
  so~	
  resumma@on	
  
	
  	
  	
  	
  	
  	
  leads	
  to	
  Logn[β]	
  terms,	
  while	
  Coulombic	
  interac@ons	
  lead	
  mostly	
  to	
  1/βn	
  terms.	
  
•  Interes@ngly,	
  the	
  numerical	
  impact	
  of	
  these	
  addi@onal(and	
  stronger)	
  singulari@es	
  is	
  small.	
  
	
  	
  	
  	
  	
  	
  we	
  need	
  to	
  be	
  very	
  close	
  to	
  threshold	
  to	
  no@ce	
  their	
  effect	
  (which	
  is	
  very	
  rare).	
  





Convergence	
  of	
  perturba@on	
  theory:	
  excellent	
  for	
  the	
  total	
  x-­‐sec@on	
  through	
  NNLO	
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Fig. 1. – Scale dependence of the total cross-section at LO (blue), NLO (red) and NNLO
(black) as a function of mtop at the Tevatron (left) and the LHC 8 TeV (right). No soft
gluon resummation is included. For reference the most precise experimental measurements are
also shown.

In fig. 1 (left) we show the scale dependence of the predicted cross-section at the
Tevatron, as a function of the top quark mass. We note the significant and consistent
improvement in the theoretical precision due to inclusion of corrections at higher per-
turbative orders. We also note the agreement between the theoretical prediction (3) and
the latest Tevatron measurement [13].

Next we turn to the LHC. In fig. 1 (right) we show the scale dependence of the
predicted cross-section at the LHC 8 TeV as a function of mtop. Similarly to the case
of the Tevatron, we observe a very good perturbative convergence of the theoretical
prediction and good agreement with the available measurement [14].

In fig. 2 (left) we show the scale dependence of the predicted cross-section at the LHC
as a function of the collider energy. We note that the perturbative convergence observed
at 8 TeV is consistently present in the whole range of relevant LHC energies. Moreover,
the good agreement of the NNLO theoretical prediction with the available data persists
at all energies where data is currently available [15-17].

Next we study the impact of soft-gluon resummation on the size of the scale depen-
dence and the central value of the theoretical prediction. In fig. 2 (right) we show the
scale dependence of the predicted cross-section at the LHC 8 TeV for a number of cases
with different fixed order and logarithmic accuracy: LO, NLO, NLO+LL, NLO+NLL,
NLO+NNLL, NNLO, NNLO+LL, NNLO+NLL and NNLO+NNLL. In all cases we fol-
low the resummation procedure of Ref. [18]. We set the constant A = 0 (introduced in
Ref. [19]), mtop = 173.3 GeV and set the accuracy of the pdf according to the accuracy
of the fixed order result.

We observe that the excellent convergence of the perturbative expansion is preserved
after the inclusion of soft gluon resummation. In particular, the feature that resummation
shifts the fixed order cross-section up by about 2-3% is consistently present at NLO and
NNLO and does not seem to significantly depend on the logarithmic accuracy of the

(3) Recall that only the scale dependence is shown. The full theoretical uncertainty is, roughly,
about twice as large as the scale dependence.
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8 TeV at LO, NLO and NNLO including also soft-gluon resummation at LL, NLL and NNLL.

resummation. Inclusion of resummation with logarithmic accuracy at NLL or NNLL
also noticeably decreases the scale dependence of the theoretical prediction, as expected.
The absolute size of the resulting reduction in scale dependence is also at the 2% level.

An alternative way of assessing the impact of soft-gluon resummation is shown in
fig. 3 (which updates fig. 1 of Ref. [18] by including the exact NNLO result). Plotted
is the relative error of the cross-section at the LHC as a function of the collider energy.
We consider a broad range of energies, starting from slightly above the tt̄ production
threshold and going up to 45 TeV which is far above threshold. In all cases we observe
that the inclusion of soft gluon resummation extends the validity of the perturbative
prediction closer to threshold. For large collider energies the enhanced tt̄ threshold
contribution gets reduced and, indeed, we observe that the resummed and unresummed
predictions converge to each other in this case. We also notice that the difference between
NLL and NNLL is small and is more pronounced when added on top of the NLO result
(as anticipated). Finally we note that the inclusion of soft-gluon resummation on top
of the NNLO result makes the relative scale uncertainty practically independent of the
collider energy, except of course for the immediate threshold region which, a posteriori,
is another justification for the use of soft-gluon resummation.

5. – Application to searches for physics beyond the Standard Model

In addition to being a powerful tool for testing the Standard Model, the high precision
of the total inclusive tt̄ production cross-section presents an opportunity for devising new
strategies for searches of physics beyond the Standard Model. A first exploration of the
improvements in BSM searches arising from NNLO top data was presented in Ref. [9],
where it was shown that the use of top quark data in a NNLO global PDF fit leads to
an improved determination of the poorly known large-x gluon PDF. This improvement
then translates into more accurate predictions for BSM heavy particle production and
for the large mass tail of the Mtt distribution, the latter used in searches of new heavy
resonances which decay into top quarks.

While the above examples illustrate the indirect improvement in BSM searches due
to top quark data, high-precision top production can also impact BSM studies directly,



•  The	
  best	
  proof	
  the	
  so~	
  gluon	
  resumma@on	
  macers	
  exactly	
  where	
  it	
  is	
  needed:	
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Fig. 3. – The relative scale uncertainty of the tt̄ cross-section, computed as a function of the
LHC collider energy at fixed order (NLO and NNLO) and including with soft-gluon resummation
(NLL and NNLL).

for example, in the search for supersymmetric top partners - the stops. The basic idea
is rather simple [20]: in searches for stops with mass that is only slightly above the top
mass, the stops decay to either a pair of top quarks or to the decay products of the top
quark. Either way, the conventional stop searches require separation of the stop signal
from the very similar and much larger top background. The ratio of the stop over top
cross-sections is shown in fig. 4 (left) for LHC 8 and 14 TeV. The computation of the
top cross-section is done at NNLO+NNLL with the program Top++ (2.0) [7], while
the stop cross-section is computed at NLO with the program Prospino(2.1) [21], using
consistently MSTW2008 in both programs. For a stop mass equal to the top mass the
ratio of cross sections is about 15%, decreasing quickly as the stop mass increases.

In fig. 4 (right) we show the “double” ratio R14/8(top + stop)/R14/8(top), where
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Fig. 4. – Stop production at LHC 8 and 14 TeV. Left plot: the ratio of the stop and top
production cross-sections. Right plot: the double ratio of the sum of top and stop cross-sections
at 8 and 14 TeV normalized to pure top pair cross-section at 8 and 14 TeV. The top pair
cross-section is evaluated at NNLO+NNLL with Top++(2.0) while the stop pair cross-section
is evaluated at NLO with the help of the program Prospino(2.1).

•  Resummed	
  results	
  becer	
  behaving	
  closer	
  to	
  threshold;	
  Fixed	
  Order	
  perturba@on	
  theory	
  
	
  	
  	
  	
  	
  	
  starts	
  to	
  fail	
  close	
  to	
  threshold	
  (as	
  it	
  should)	
  



•  A	
  note	
  on	
  scale	
  varia@on:	
  

•  To	
  es@mate	
  the	
  error	
  from	
  missing	
  higher-­‐order	
  terms	
  we	
  use	
  the	
  size	
  of	
  scale	
  varia@on.	
  

•  This	
  can	
  be	
  done	
  in	
  a	
  number	
  of	
  ways,	
  and	
  it	
  does	
  make	
  a	
  difference:	
  

•  μF	
  =	
  μR	
  and	
  the	
  two	
  are	
  varied	
  together	
  

•  μF	
  =/=	
  μR	
  and	
  the	
  two	
  are	
  varied	
  independently,	
  but	
  restricted	
  to	
  their	
  ra@o	
  in	
  (0.5	
  ,	
  2)	
  

•  The	
  difference	
  is	
  yet	
  higher	
  order	
  terms	
  and	
  the	
  two	
  approaches	
  are	
  formally	
  equivalent	
  
•  Yet	
  it	
  is	
  no@ced	
  than	
  the	
  second	
  yields	
  much	
  larger	
  varia@on	
  	
  (could	
  be	
  up	
  to	
  a	
  factor	
  of	
  3)	
  

•  The	
  previous	
  plots	
  demonstrates	
  that	
  he	
  second	
  approach	
  produces	
  scale	
  varia@on	
  which	
  	
  
	
  	
  	
  	
  	
  	
  could	
  be	
  interpreted	
  as	
  due	
  to	
  missing	
  higher	
  order	
  terms.	
  



Effect	
  of	
  running	
  scales:	
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Figure 8: Transverse-momentum distribution of the positron with standard cuts for the
LHC at

√
s = 8TeV for fixed scale µ0 = mt/2.
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Figure 9: Transverse-momentum distribution of the top quark with standard cuts for the
LHC at

√
s = 8TeV for fixed scale µ0 = mt/2.
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Figure 10: Transverse-momentum distribution of the positron with standard cuts for the
LHC at

√
s = 8TeV for dynamical scale µ0 = ET/2.
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Figure 11: Transverse-momentum distribution of the top quark with standard cuts for
the LHC at

√
s = 8TeV for dynamical scale µ0 = ET/2.
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Figure 9: Normalised differential tt production cross section in the `+jets channels as a func-
tion of the pt

T (top left) and yt (top right) of the top quarks, and the ptt
T (middle left), ytt (middle

right), and mtt (bottom) of the top-quark pairs. The superscript ‘t’ refers to both top quarks and
antiquarks. The inner (outer) error bars indicate the statistical (combined statistical and system-
atic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG,
and MC@NLO, and to NLO+NNLL [15] and approximate NNLO [16, 17] calculations, when
available. The MADGRAPH prediction is shown both as a curve and as a binned histogram.

Top	
  differen@al	
  spectra	
  (LHC	
  7	
  TeV,	
  CMS)	
  

Interes@ng	
  discrepancy;	
  is	
  it	
  from	
  higher	
  order	
  terms;	
  or	
  top	
  reconstruc@on?	
  


