### Interference Effects of neutral MSSM Higgs Bosons

#### with a Generalised Narrow-Width Approximation.



#### Elina Fuchs DESY/ CERN

in collaboration with Silja Thewes and Georg Weiglein

Cargèse, July 2014

Student talk





# Useful approximation for New Physics searches

- NP: many-particle final state difficult at higher order
- simplified by factorisation into production×decay



- $\blacktriangleright$  narrow width  $\Gamma \ll M$
- kinematically open, away from thresholds
- non-factorisable corrections small
- no interference with other processes



# Useful approximation for New Physics searches

- NP: many-particle final state difficult at higher order
- simplified by factorisation into production×decay



- narrow width  $\Gamma \ll M$
- kinematically open, away from thresholds
- non-factorisable corrections small
- no interference with other processes

#### Mass degeneracy: interference term significant

NWA not applicable for  $|M_i - M_j| \lesssim \Gamma_i, \Gamma_j o$  generalised NWA



# Example process: $\Gamma(\tilde{\chi}_4^0 \to \tilde{\chi}_1^0 \tau^+ \tau^-)$ at leading order



**Scenario:** small  $\Delta M = M_H - M_h$ 





#### **On-shell interference term**

▶ 'full':  $1 \rightarrow 3$  with h, H+Int

snwa: 
$$\Gamma_{P_h} \mathsf{BR}_h + \Gamma_{P_H} \mathsf{BR}_H$$

large discrepancy between sNWA and full 3-body decay width



# Example process: $\Gamma(\tilde{\chi}_4^0 \to \tilde{\chi}_1^0 \tau^+ \tau^-)$ at leading order



**Scenario:** small  $\Delta M = M_H - M_h$ 







# Accuracy of gNWA at 1-loop order



**uncertainty**:  $M < 1\% \sim$  estimated full uncertainty; R < 4%



### Conclusion

#### Summary: interference and NLO effects in generalised NWA

- example: decay  $\tilde{\chi}_4^0 \stackrel{h^0, H^0}{\rightarrow} \tilde{\chi}_1^0 \tau^+ \tau^-$  with interference of Higgs bosons
- demonstrated how gNWA can be applied at the loop level: inclusion of virtual and real corrections, cancellations of IR-divergences preserved
  - $\blacksquare$  on-shell matrix elements: 1% agreement with full result
  - $\blacksquare$  R-factor: 4% agreement with full result, but technically easier
- ▶ gNWA enables factorisation into production and decay with interference and NLO effects → useful for various BSM models



# Conclusion

#### Summary: interference and NLO effects in generalised NWA

- example: decay  $\tilde{\chi}_4^0 \stackrel{h^0, H^0}{\rightarrow} \tilde{\chi}_1^0 \tau^+ \tau^-$  with interference of Higgs bosons
- demonstrated how gNWA can be applied at the loop level: inclusion of virtual and real corrections, cancellations of IR-divergences preserved
  - $\blacksquare$  on-shell matrix elements: 1% agreement with full result
  - $\blacksquare$  R-factor: 4% agreement with full result, but technically easier
- ▶ gNWA enables factorisation into production and decay with interference and NLO effects → useful for various BSM models

### **Ongoing:** CP-violating mixing

► MSSM<sub>C</sub> : 
$$\mathcal{CP} \Rightarrow H^0 - A^0$$
 interference  
■  $b\bar{b} (h/H/A \to \tau^+ \tau^-/b\bar{b})$   
■  $gg \to h/H/A \to \tau^+ \tau^-/\mu^+\mu^-$ 

- $\blacktriangleright$  negative interference terms could relax limits on  $\sigma$
- impact on experimental parameter limits?



Elina Fuchs — DESY — Cargèse 2014 — Page 4

### Thank you!



#### Do you have any questions?





PIER Helmholtz Graduate Council Kerduag af Universität Kerdung in Cooperation with DESY School





Elina Fuchs — DESY — Cargèse 2014 — Page 5

### **NWA** basics

#### Factorisation of the *n*-particle phase space $d\Phi_n$

• 
$$d\Phi_n \equiv dlips\left(P; p_1, ..., p_f\right) = (2\pi)^4 \delta^{(4)} \left(P - \sum_{f=1}^n p_f\right) \prod_{f=1}^n \frac{d^3 p_f}{(2\pi)^3 2E_f}$$

▶ here: kinematics of 3-body decay  $\rightarrow$  2-body  $d\Phi = dlips(\sqrt{s}; p_c, p_e, p_f) = dlips(\sqrt{s}; p_c, q) \frac{dq^2}{2\pi} dlips(q; p_e, p_f)$ 

#### **Production**×decay

- ▶ instead of BREIT-WIGNER propagator  $\frac{1}{q^2-M^2+iM\Gamma}$
- ► on-shell production of particle with mass M, and subsequent decay:  $\sigma_{ab \rightarrow cef} \approx \sigma_{ab \rightarrow cd} (q^2 = M^2) \cdot BR_{d \rightarrow ef}$
- uncertainty of  $\mathcal{O}\left(\frac{\Gamma}{M}\right)$



### Standard NWA: Conditions and limitations



#### Validity

- narrow width  $\Gamma \ll M$ , otherwise off-shell effects e.g. [Gigg, Richardson '08]
- kinematically open, away from thresholds e.g. [Kauer '08]
- ▶ non-factorisable corrections small e.g. [Denner, Dittmaier, Roth '98]
- ▶ no interference with other processes e.g. [Reuter '07] [Berdine, Kauer, Rainwater '07]

[Kalinowski, Kilian, Reuter, Robens, Rolbiecki '08]



### Generalised NWA with interference term

#### 2 steps for on-shell approximation of interference term

- matrix elements on-shell  $\mathcal{M}(q^2 = M^2)$ 
  - pro close to full result
  - con no automated evaluation of squared matrix elements
- ▶ 'interference weight factor' R:  $\sigma \approx \sum_{i} \sigma_{P_i} BR_i \cdot (1 + R_i)$

pro building blocks available as in sNWA:  $\sigma_P, \Gamma_D, \Gamma^{tot}, g_P, g_D$ con additional approximation  $M_h \approx M_H$ 

#### accuracy vs. technical simplification of approximation



#### Cross section with full interference term

$$\begin{split} \sigma(ab \to cef) &= \frac{1}{F} \int d\Phi \left( \frac{|\mathcal{M}(ab \to ch)|^2 |\mathcal{M}(h \to ef)|^2}{(q^2 - M_h^2)^2 + M_h^2 \Gamma_h^2} + \frac{|\mathcal{M}(ab \to cH)|^2 |\mathcal{M}(H \to ef)|^2}{(q^2 - M_H^2)^2 + M_H^2 \Gamma_H^2} \right. \\ &+ 2Re \left\{ \frac{\mathcal{M}(ab \to ch) \mathcal{M}^*(ab \to cH) \mathcal{M}(h \to ef) \mathcal{M}^*(H \to ef)}{(q^2 - M_h^2 + iM_h \Gamma_h)(q^2 - M_H^2 - iM_H \Gamma_H)} \right\} \right) \end{split}$$

Mass degeneracy: interference term significant [Fowler, PhD Thesis '10]

- ▶ NWA not applicable for  $|M_i M_j| \leq \Gamma_i, \Gamma_j$  (BREIT-WIGNER overlap)
- e.g. MSSM: for some parameters,  $h^0, H^0, A^0$  have similar masses
- also relevant for other models



### Generalised NWA with interference term

$$\begin{split} \sigma(ab \to cef) &= \frac{1}{F} \int d\Phi \left( \frac{|\mathcal{M}(ab \to ch)|^2 |\mathcal{M}(h \to ef)|^2}{(q^2 - M_h^2)^2 + M_h^2 \Gamma_h^2} + \frac{|\mathcal{M}(ab \to cH)|^2 |\mathcal{M}(H \to ef)|^2}{(q^2 - M_H^2)^2 + M_H^2 \Gamma_H^2} \right. \\ &+ 2Re \left\{ \frac{\mathcal{M}(ab \to ch)\mathcal{M}^*(ab \to cH)\mathcal{M}(h \to ef)\mathcal{M}^*(H \to ef)}{(q^2 - M_h^2 + iM_h \Gamma_h)(q^2 - M_H^2 - iM_H \Gamma_H)} \right\} \right) \\ & \mathcal{M} \ on-shell \\ & \sigma_{ab \to ch} BR_{h \to ef} + \sigma_{ab \to cH} BR_{H \to ef} \\ &+ \frac{2}{F} \operatorname{Re} \left\{ \int \frac{dq^2}{2\pi} \left( \Delta_1^{BW}(q^2) \Delta_2^{*BW}(q^2) \left[ \int d\Phi_P(q^2)\mathcal{M}_{P_1}(M_1^2)\mathcal{M}_{P_2}^*(M_2^2) \right] \right. \\ & \left. \left. \left[ \int d\Phi_D(q^2)\mathcal{M}_{D_1}(M_1^2)\mathcal{M}_{D_2}^*(M_2^2) \right] \right) \right\} \\ & \mathcal{M}_h \overset{\simeq}{\approx} m_H \ \sigma_{P_1} BR_1 \cdot (1 + R_1) + \sigma_{P_2} BR_2 \cdot (1 + R_2) \\ & R_i := 2M_i \Gamma_i w_i \cdot 2\operatorname{Re} \left\{ x_i I \right\} \\ & w_i := \frac{\sigma_{P_i} BR_i}{\sigma_{P_1} BR_1 + \sigma_{P_2} BR_2} \\ & x_i := \frac{g_{P_i} g_{P_j}^* g_{D_i} g_{D_j}^*}{|g_{P_i}|^2 |g_{D_i}|^2} \quad (g_{P/D} : \operatorname{couplings in production/decay) \end{split}$$



Elina Fuchs — DESY — Cargèse 2014 — Page 5

### Uncertainty of the sNWA at tree level





### Higgs propagator mixing [Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein '07]

- $3 \times 3$  mixing (approximation of  $6 \times 6$ )  $\rightarrow 2 \times 2$  for  $\mathcal{CP}$ 
  - ▶ mixing self-energies  $\Rightarrow$  mass matrix ( $m_{tree}, M_{loop}$ )

$$-\overline{h_i} - - \Delta_{h_i h_j} - \overline{h_j} - -$$

▶ masses and widths from complex pole  $\mathcal{M}_i^2 = M_i^2 - iM_i\Gamma_i$ 

► diagonal propagator 
$$\Delta_{ii} = \frac{i}{p^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(p^2)} \xrightarrow{p^2 \simeq \mathcal{M}_i^2} \Delta_i^{BW} \cdot \hat{\mathbf{Z}}$$

#### Finite wave function normalisation factors (Z-factors)

► correct on-shell properties of external Higgs bosons with mixing:  $\hat{\mathbf{Z}}_{ij}$  $\stackrel{h}{\longrightarrow} \stackrel{H}{\longrightarrow} \Gamma_{h_i}^{(Z)} = \hat{Z}_{h_ih}\Gamma_h + \hat{Z}_{h_iH}\Gamma_H + \dots$ 

 $\longrightarrow$  FeynHiggs

# Higgs propagator mixing: BW approximation

▶ simple example process  $b\bar{b} \rightarrow \tau^+ \tau^-$  to study propagator mixing effects



- $\blacktriangleright$  mixing propagators well approximated by  $\hat{Z}\cdot\Delta^{BW}$
- sensitive to exact values of total widths



# Breit-Wigner propagators: total width

Higgs mass matrix with mixing self-energies



- larger total widths from FeynHiggs reduce cross section
- > 2 resonances overlap in 1 broad peak



### Renormalisation: neutralino sector on-shell

#### Neutralino and chargino matrices

$$Y = \begin{pmatrix} M_1 & 0 & -M_Z c_\beta s_W & M_Z s_\beta s_W \\ 0 & M_2 & M_Z c_\beta c_W & -M_Z s_\beta c_W \\ -M_Z c_\beta s_W & M_Z c_\beta c_W & 0 & -\mu \\ M_Z s_\beta s_W & -M_Z s_\beta c_W & -\mu & 0 \end{pmatrix}, \ X = \begin{pmatrix} M_2 & \sqrt{2}M_W s_\beta \\ \sqrt{2}M_W c_\beta & \mu \end{pmatrix}$$

**On-shell conditions** [Fowler, Weiglein '09] [Bharucha, Fowler, Moortgat-Pick, Weiglein '12] [Chatterjee, Drees, Kulkarni, Xu '11] [Bharucha, Heinemeyer, Pahlen, Schappacher '12]....

- ▶ 3 out of 6  $\tilde{\chi}^0, \tilde{\chi}^\pm$  masses on-shell
- choose most bino-, wino- and higgsino-like states as input
  - $\rightarrow$  3 parameters  $|M_1|,|M_2|,|\mu|$  properly fixed

stable scheme choice depends on scenario



# $1 \rightarrow 3~{\rm decay}$ at NLO





# **1-loop calculation**



- diagrams
  - vertices
  - self-energy
  - box
  - soft photon radiation
- Higgs mixing by Â-factors (finite wave function renormalisation factors)
- manageable at 1-loop level

use process to validate gNWA at 1-loop level



### Higher-order corrections in the generalised NWA

#### Loop corrections to sub-processes of $\tilde{\chi}^0_4 \rightarrow \tilde{\chi}^0_1 \tau^+ \tau^-$

- **Production:** full vertex corrections  $\mathcal{O}(15\%)$
- **Decay:** virtual contributions and real  $\gamma$ -emission  $\mathcal{O}(-1\%)$
- Higgs propagator: self-energy mixing by Z-factors

#### Strategy: combination of precise partial results

> separate calculation of loop corrections to production and decay

> approximation of interference term based on NLO matrix elements

> IR-cancellations between on-shell matrix elements with virtual + real soft  $\gamma$ 

> precise  $\Gamma, M, Z, BR$  (FeynHiggs)

 $\implies$ 

combination of higherorder corrections to subprocesses in generalised NWA



### $1 \rightarrow 3~{\rm decay}$ vs. gNWA at NLO

 $\Gamma(\tilde{\chi}_4^0 \rightarrow \tilde{\chi}_1^0 \tau^+ \tau^-)$  gNWA NLO



#### 1-loop gNWA

- 1-loop expansion of matrix elements
- Higgs-sector: *M*, Γ, Â at leading 2-loop level from FeynHiggs



### gNWA with most precise subprocesses

$$\sigma_{\mathsf{g}\mathsf{NWA}}^{\mathsf{best}} = \sigma_{full}^{0} + \sum_{i=h,H} \left( \sigma_{P_i}^{\mathsf{best}} \mathsf{BR}_i^{\mathsf{best}} - \sigma_{P_i}^{0} \mathsf{BR}_i^{0} \right) + \sigma_{\mathsf{g}\mathsf{NWA}}^{int1} + \sigma_{\mathsf{g}\mathsf{NWA}}^{int+}$$



use factorisation: include  $\sigma_P$  and BR at highest available precision in gNWA



### Relation of masses and total widths





