Precise predictions for Higgs-masses in the Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Peter Drechsel

in collaboration with L. Galeta, S. Heinemeyer and G. Weiglein

Deutsches Elektronen-Synchrotron (DESY)

July 16, 2014

Outline of Project

Aim:

precise prediction of Higgs-masses in the NMSSM for implementation into FEYNHIGGS [Heinemeyer, Weiglein, Rzehak, et. al. '10]

Means:

 diagrammatic methods, automated calculation using FeynArts-Modelfile (used for previous publications, e.g [Heinemeyer, Weiglein, Zeune, et. al. '12]), work in progress

NMSSM: Scalar Higgs-Sector

Mixing of the gauge to mass eigenstates

	Gauge-	Mass-
CP-even	ϕ_1, ϕ_2, ϕ_s	h ₁ , h ₂ , h ₃ ,
CP-odd	χ1, χ2, χs	G ⁰ , a ₁ , a ₂
charged	ϕ_1^\pm , ϕ_2^\pm	G^\pm , H^\pm

Minimization of potential on classical level

$$H_{1} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix} \qquad H_{2} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$

$$S = v_s + rac{1}{\sqrt{2}} \left(\phi_s + \mathrm{i} \chi_s
ight)$$

Calculation: Mass Definition

pole mass for a scalar field ϕ_i

$$0 = \left[i \left(p^2 - M_{i,\text{tree}}^2 \right) + i \hat{\Sigma}_{ii}(p^2) \right]_{p^2 = \widetilde{M}_{\text{pole}}^2}, \ M_i^2 = \text{Re} \ \widetilde{M}_{\text{pole}}^2$$

$$i\hat{\Sigma}^{(1)}_{\phi_i\phi_j}(p^2) = \phi_i - \phi_j + \phi_i - \phi_j + \phi_j$$

= finite

Results: Numerical Scenario I

Parameter

$$\begin{split} M_{H\pm} &= 250 \; {\rm GeV}, \; X_t = X_b = 2 \; {\rm TeV}, \; M_{\tilde{q}} = M_{\tilde{q}_R} = 1 \; {\rm TeV}, \; A_\kappa = -100 \; {\rm GeV}, \\ \mu_{\rm eff} &= 250 \; {\rm GeV}, \; \kappa = \frac{\lambda}{5}, \; \tan\beta = 5, \; \mu_{\rm ren} = m_t = 173.3 \; {\rm GeV} \end{split}$$

• unphysical scenario with light singlet-like Higgs h_1

P. Drechsel, DESY

Conclusion & Outlook

Conclusion

 ongoing effort for precise predictions of Higgs-masses in NMSSM

Outlook

- finalizing full 1-loop contribution
- comparison of full 1-loop results with existing tools: NMSSMTOOLS, NMSSMCALC
- implementation of dominant 2-loop contributions into FEYNHIGGS

Backup

NMSSM: Superpotential

$$\mathcal{W} = Y_t \widehat{Q} \widehat{H}_2 \widehat{u} - Y_b \widehat{Q} \widehat{H}_1 \widehat{d} - Y_\tau \widehat{L} \widehat{H}_1 \widehat{l} + \lambda \widehat{S} \widehat{H}_2 \widehat{H}_1 + \frac{\kappa}{3} \widehat{S}^3$$
$$\widehat{S} = v_s + S + \sqrt{2} \, \vartheta \widetilde{S} + F \text{-term}$$

$$\mathcal{L}_{\text{Soft}} = \left\{ -\frac{1}{3} \kappa A_{\kappa} S^3 - \lambda A_{\lambda} S H_2 H_1 + \text{h.c.} \right\} - m_s^2 \left| S \right|^2 + \dots$$

 \implies additional Higgs- and Neutralino-fields

Calculation: Mass-Matrices (CP-conserving)

 3 × 3-mass matrices for electrically neutral scalars *M*²_{φφφ}, *M*²_{XXX}

 2 × 2-mass matrix for electrically charged scalars *M*²_{φ−φ+}

Set of independent parameters to represent mass-matrices:

e,
$$M_Z^2$$
, M_W^2 ; T_{ϕ_1} , T_{ϕ_2} , T_{ϕ_s} ; λ , κ , A_{κ} ; $M_{H^{\pm}}^2$, $\tan \beta$, $\mu_{\text{eff}} (= \lambda v_S)$

Calculation: Renormalization Conditions

e,
$$M_Z^2$$
, M_W^2 ; T_{ϕ_1} , T_{ϕ_2} , T_{ϕ_s} ; λ , κ , A_κ ; $M_{H^\pm}^2$, tan β , $\mu_{\sf eff}$

masses are renormalized on-shell

 $M_Z^2 \ , \ M_W^2 \ , \ M_{H^\pm}^2$

- electric charge renormalized in the Thompson-limit
- tadpole contributions at loop order should not alter classical minimum

 $\delta T_{\phi_i} = -T_{\phi_i}$

rest of the parameters renormalized DR

Calculation: Outline

Calculation of 1-loop contributions in three steps:

- 1 leading Yukawa approximation (LY): contribution of $t/\tilde{t}_{1,2}$ in gaugeless limit and vanishing external momenta
- 2 contribution of full quark-/squark-sector (N_c)
- 3 full contribution

Calculation: Outline

Calculation of 1-loop contributions in three steps:

- 1 leading Yukawa approximation (LY): contribution of $t/\tilde{t}_{1,2}$ in gaugeless limit and vanishing external momenta
- 2 contribution of full quark-/squark-sector (N_c)
- 3 full contribution

Status of the three steps:

- $1\,$ finished, result UV-finite
- $2\,$ finished, result UV-finite
- 3 work in progress

Calculation: Leading Yukawa Approximation MSSM

leading contribution from Yukawa-couplings

$$- O^{-}, - O^{-}, Y_q^2 \propto \left(\frac{m_q}{M_W}\right)^2$$

other contributions suppressed at least by factors

$$Y_t^{-1} \propto \frac{M_W}{m_t}, \ Y_t^{-2} \propto \left(\frac{M_W}{m_t}\right)^2$$

Calculation: Leading Yukawa Approximation NMSSM

leading contributions involving top Yukawa-couplings

$$\begin{split} \Sigma_{\phi_i\phi_j}(0) &\sim Y_t^2 \propto \frac{m_t^2}{M_W^2} \qquad i,j \in \{1,\ 2\} \\ \Sigma_{\phi_i\phi_s}(0) &\sim \lambda Y_t, \ \kappa Y_t \qquad \lambda,\kappa < 1 \\ \Sigma_{\phi_s\phi_s}(0) &\sim \lambda^2, \ \kappa^2, \lambda \kappa \qquad \lambda^2, \kappa^2, \lambda \kappa \ll 1 \end{split}$$

Calculation: Leading Yukawa Approximation NMSSM

leading contributions involving top Yukawa-couplings

$$\begin{split} \Sigma_{\phi_i\phi_j}(0) &\sim Y_t^2 \propto \frac{m_t^2}{M_W^2} \qquad i,j \in \{1,\ 2\} \\ \Sigma_{\phi_i\phi_s}(0) &\sim \lambda Y_t,\ \kappa Y_t \qquad \lambda,\kappa < 1 \\ \Sigma_{\phi_s\phi_s}(0) &\sim \lambda^2,\ \kappa^2,\lambda\kappa \qquad \lambda^2,\kappa^2,\lambda\kappa \ll 1 \end{split}$$

 \implies reduces necessary set of renormalization constants

Calculation: Leading Yukawa Approximation NMSSM

leading contributions involving top Yukawa-couplings

$$egin{aligned} \Sigma_{\phi_i\phi_j}(0) &\sim Y_t^2 \propto rac{m_t^2}{M_W^2} & i,j \in \{1,\ 2\} \ \Sigma_{\phi_i\phi_s}(0) &\sim \lambda Y_t, \ \kappa Y_t & \lambda,\kappa < 1 \ \Sigma_{\phi_s\phi_s}(0) &\sim \lambda^2, \ \kappa^2, \lambda\kappa & \lambda^2, \kappa^2, \lambda\kappa \ll 1 \end{aligned}$$

⇒ reduces necessary set of renormalization constants
 renormalized CP-even mass matrix in gaugeless limit

$$\begin{split} \hat{\mathcal{M}}^{2}_{\phi\phi\phi\phi} &= \\ \begin{pmatrix} m^{2}_{\phi_{1}} + \hat{\Sigma}^{(\text{MSSM})}_{\phi_{1}\phi_{1}}(0) & m^{2}_{\phi_{1}\phi_{2}} + \hat{\Sigma}^{(\text{MSSM})}_{\phi_{1}\phi_{2}}(0) & m^{2}_{\phi_{1}\phi_{s}} \\ m^{2}_{\phi_{2}\phi_{1}} + \hat{\Sigma}^{(\text{MSSM})}_{\phi_{2}\phi_{1}}(0) & m^{2}_{\phi_{2}} + \hat{\Sigma}^{(\text{MSSM})}_{\phi_{2}\phi_{2}}(0) & m^{2}_{\phi_{2}\phi_{s}} \\ m^{2}_{\phi_{s}\phi_{1}} & m^{2}_{\phi_{s}\phi_{2}} & m^{2}_{\phi_{s}} \end{pmatrix} + \mathcal{O}\left(\frac{M_{W}}{m_{t}}\right) \end{split}$$

Calculation: Quark-/Squark-Contributions NMSSM

- contributions of the full quark-/squark-doublet
 - \implies all renormalization constants and all self-energies of the Higgs-sector are necessary
- outer momenta taken as non-vanishing

$$\hat{\Sigma}_{\phi_i\phi_i}\left(m_{\phi_i}^2\right), \ \hat{\Sigma}_{\phi_i\phi_j}\left(m_{\phi_i\phi_j}^2\right)$$

Backup: Renormalization Conditions, Details

field renormalization

$$\delta Z_{\phi_i} = - \left. \frac{\partial}{\partial p^2} \Sigma_{\phi_i \phi_i} \left(p^2 \right) \right|_{p^2 = M_{\phi_i}^2}^{\mathsf{div.}}$$

δκ, δA_κ fixed via fertex functions Γ_{φ1φ2φs}, Γ_{φsφsφs}
 δλ obtained by

$$\left.\frac{\delta\mu_{\rm eff}}{\mu_{\rm eff}}\right|^{\rm div.} = \left[\frac{\delta\lambda}{\lambda} + \frac{1}{2}\delta Z_{\phi_s}\right]^{\rm div.}$$

Backup: Constraints on Parameters

 constraint from demanding stable minimum of potential [Ellwanger, Hugonie, Teixeira, '09]

$$A_{\kappa}^2 \gtrsim 9m_S^2$$

 $4\kappa v_S < -A_{\kappa}$

 constraint from demand for no Landau-pole of Yukawa-couplings below the GUT-scale [Miller, Nevzorov, Zerwas '03]

$$\lambda^2 + \kappa^2 \lesssim 0.5$$

suppression factors

$$Y_t \propto rac{m_t}{M_W} pprox 2.16$$

 $Y_b \propto rac{m_b}{M_W} pprox 0.05$
 $\lambda^2, \ \kappa^2 \lesssim \ 0.7$

Backup: References

FEYNARTS 3.7 FORMCALC 7.4 LOOPTOOLS 2.7 NMSSMTOOLS NMSSMCALC [Ellwanger, Hugonie, Teixeira, '09] [Heinemeyer, Rzehak, Weiglein, et. al. '10] [Heinemeyer, Weiglein, Zeune, et. al. '12] [Miller, Nevzorov, Zerwas '03]

hep-ph/0012260 hep-ph/9807565 hep-ph/9807565 hep-ph/0406215 arXiv:1312.4788 arXiv:0910.1785 arXiv:1007.0956 arXiv:1207.1096 hep-ph/0304049