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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one
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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one
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Adding real and virtual contributions, the partonic cross-section reads

Partial cancellation between real (positive), virtual (negative), but real 

gluon changes the energy entering the scattering, the virtual does not 
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	 naive parton model does not survive radiative corrections 
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	 naive parton model does not survive radiative corrections 

Similarly to what is done when renormalizing UV divergences, collinear 

divergences from initial state emissions are absorbed into parton 

distribution functions 
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The plus prescription

Partonic cross-section: 
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Plus prescription makes the universal cancelation of singularities explicit
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Plus prescription makes the universal cancelation of singularities explicit
� 1

0
dzf+(z)g(z) �

� 1

0
f(z) (g(z)� g(1))

The partonic cross section becomes

Collinear singularities still there, but they factorize.
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Factorization scale

Schematically use ln
Q
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Factorization scale

Schematically use 

So we define
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Factorization scale

Schematically use 

So we define
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• universality, i.e. the PDF redefinition does not depend on the process

• choice of μF ∼ Q avoids large logarithms in partonic cross-sections

• PDFs and hard cross-sections don’t evolve independently

• the factorization scale acts as a cut-off, it allows to move the divergent 

contribution into non-pertubative parton distribution functions 
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Improved parton model
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Naive parton model:

After radiative corrections:
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• With initial state parton collinear singularities don’t cancel

• Initial state emissions with k⊥ below a given scale are included in PDFs

• This procedure introduces a scale μF, the so-called factorization scale 

which factorizes the low energy (non-perturbative) dynamics from the 

perturbative hard cross-section

• As for the renormalization scale, the dependence of cross-sections on 

μF is due to the fact that the perturbative expansion has been truncated

• The dependence on μF becomes milder when including higher orders

Intermediate recap
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 
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DGLAP equation
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Master equation of QCD: we can not compute parton densities, but we 
can predict how they evolve from one scale to another

Universality of splitting functions: we can measure pdfs in one process 
and use them as an input for another process

 Altarelli, Parisi; Gribov-Lipatov; Dokshitzer ’77 

x
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Conventions for splitting functions

Accounting for the different species of partons the DGLAP equations 

become:

There are various partons flavours. Standard notation:

This is a system of coupled integro/differential equations

The above convolution in compact notation: 
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General DGLAP equation
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History of splitting functions

Pab : Altarelly, Parisi; Gribov-Lipatov; Dokshitzer (1977) 

Pab : Curci, Furmanski, Petronzio (1980) 

Pab : Moch, Vermaseren,Vogt (2004) 

☛ Pab : one of the hardest calculation ever performed in pQCD 

☛ Essential input for NNLO pdfs determination (state of the art today)

(2)

(2)

(1)

(0)
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Evolution
So, in perturbative QCD we can not predict values for 

• the coupling

• the masses

• the parton densities

• ... 
What we can predict is the evolution with the Q2 of those quantities.
These quantities must be extracted at some scale from data.

• not only is the coupling scale-dependent, but partons have a scale 
dependent sub-structure

• we started with the question of how one can access the gluon pdf:       
In DIS: because of the DGLAP evolution, we can access the gluon pdf 
indirectly, through the way it changes the evolution of quark pdfs. Today 
also direct measurements using Tevatron jet data and LHC tt production 
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DGLAP Evolution

14

Measure PDFs at 10 GeV Evolve in Q2 and make LHC predictions

The DGLAP evolution is a key to precision LHC phenomenology: it 
allows to measure PDFs at some scale (say in DIS) and evolve upwards 
to make LHC (7, 8, 13, 14, 33, 100.... TeV) predictions 

Different PDFs evolve 
in different ways 
(different equations + 
unitarity constraint)



Typical features of PDFs
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“HERA PDF”

! “H1 and ZEUS; consistent within large uncertainty” is now resolved

in “single HERA PDF; with an improvement in level of uncertainty”.

! Gluons

" Flavor decomposition

-- “Combined F2”
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Typical features: 

• gluon distribution very large

• gluon and sea distributions 
grow at small x

• gluon dominates at small x

• valence distributions peak at 
x = 0.1 - 0.2

• largest uncertainties at very 
small or very large x 

Crucial property: factorization! 

PDFs extracted in DIS can be used at hadron colliders. This assumption 
can be checked against data (but often rigorous proof is missing)



Parton density coverage

• most of the LHC x-range 
covered by Hera

• need 2-3 orders of 
magnitude Q2-evolution

• rapidity distributions probe 
extreme x-values

• 100 GeV physics at LHC: 
small-x, sea partons

• TeV physics: large x 

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

fixed

target
HERA

x
1,2

 = (M/14 TeV) exp(±y)

Q = M

LHC parton kinematics

M = 10 GeV

M = 100 GeV

M = 1 TeV

M = 10 TeV

66y = 40 224
Q

2
  

 (
G

eV
2
)

x

Figure 1: Left plot: The LHC kinematic plane (thanks to J Stirling). Right plot: PDF
distributions at Q2 = 10, 000 GeV2.

Figure 2: Top row: e−, e+ and Ae rapidity spectra for the lepton from the W decay,
generated using HERWIG + k factors and CTEQ6.1 (red), ZEUS-S (green) and MRST2001
(black) PDF sets with full uncertainties. Bottom row: the same spectra after passing through
the ATLFAST [12] detector simulation and selection cuts.(Thanks to A Tricoli)

DIS 2007

DGLAP
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Parton densities: recent progress

Recent major progress:

• full NNLO evolution (previous approximate NNLO)

• improved treatment of heavy flavors near the quark mass
[Numerically: e.g. (6-7)% effect on Drell-Yan at LHC] 

• more systematic use of uncertainties/correlations (e.g. 

dynamic tolerance, combinations of PDF + αs uncertainty)

• Neural Network (NN) PDFs 

ABM, CTEQ, MSTW, NN collaboration   

17

Still, considerable differences in predictions for benchmark process. 



Parton densities: benchmark processes

Uncertainty from PDFs (no αs) on benchmark processes NN col. 1303.1189 

4) different αs 

In general differences due to: 
1) different data in fits
2) different methodology
    [parametrization, theory]
3) treatment of heavy quarks
4) different αs
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Parton densities and LHC phenomenology

19

PDFs limit extraction of Higgs 
boson couplings. Crucial for 
Higgs boson characterization  

Very large (> 100%) 
uncertainties for new heavy 
particle production. Crucial in 
BSM searches



Artificial Neural Network PDFs

4) different αs 

20

Novel PDF fitting methodology: Artificial Neural Network (ANN) PDFs

from biology ... ... to high-energy physics

Inspired by biological brains that excel in pattern recognition, 
classification, forecasting, etc.  ANNs are mathematical algorithms 

widely used in a range of applications, from targeted marketing, finance 

forecasting, now to high-energy physics.  



Artificial Neural Network PDFs

4) different αs 

21

Example: pattern recognition During the Yugoslavian wars, the NATO 
used ANNs to recognize hidden military vehicles

Military plane hidden below a 
commercial plane identified. 



Artificial Neural Network PDFs

4) different αs 

22

Example: forecasting in marketing  A bank wants to offer a product to 
their client. Possible strategies: 

1.contact all clients (slow, costly) 

2.contact few percent of the clients and train ANN with the input 

(sex, income, family status...) and output (yes/no) from the clients. 

Cost effective method:    
Use this information to 

contact only clients likely to 

accept the offer



Artificial Neural Network PDFs

4) different αs 

23

ANNs provide universal unbiased interpolants to parametrize non-
perturbative dynamics 

‘Learn’ the underlying physics laws from the experimental data using 

Genetic Algorithms (learn on ensemble of replica) 

No theory bias introduced in the PDF determination by the choice of 

ad-hoc functional form  

• NNpdfs approach: one ANN per PDF, O(500) parameters in total 

(PDFs identical if O(1000) parameters are used) 

• traditional approach: one simple polynomial per PDF, O(10-25) 

parameters in total 



Flexibility matters

4) different αs 
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• faithful error estimate: uncertainty blows up in region with no data

• crucial ingredient for reliable LHC searches at high mass 



PDFs: future challenges 

4) different αs 

25

• PDFs have been fitting since many years ... 

• the development of NN PDFs has been a huge step forward in the 

parameterization and reliable error estimate 

• now is there any new challenge ahead? Or is it just a matter of 

adding more data to the fits? 

When seeking for high precision electro-weak effects can not be 
neglected. 

First step: QED corrections in PDFs 



QED corrections

26

• photon initiated diagrams required for consistent EW calculation

• the DGLAP QCD equations can be modified to include QED 

corrections → NNPDF2.3: photon PDF from DIS and LHC data

• important for high precision phenomenology (MW fits, WW 

production ...) and BSM searches (W’, Z’ ...) 



PDFs: future challenges 
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At high energies (LHC Run II, 100 TeV machines) W/Z boson are 
“massless”. Important to include photon/W/Z PDFs for precision 

measurements especially at high scales (BSM search regions) 

Full EW DGLAP equations have been written down. But 

considerably more complicated structure than pure QCD

Crucial differences in spontaneously broken gauge theory: 
singularities structure complicated by the fact that initial state (e.g. 

electrons, protons)

• carry non-abelian (isospin) charges 

• may be mixed charge states ⇒  Bloch-Nordsieck violation: 

double logs do not cancel in inclusive quantities
M Ciafaloni, P Ciafaloni, Comelli ’01



Intermediate recap. 

Because of infrared and collinear divergences not all quantities can be 
computed in PT ⇒	 concept of IR-safety

Parton model: incoherent sum of all partonic cross-sections, but 
failure of parton model when radiative corrections are included 

Factorization of initial state divergences into scale dependent parton 
densities

DGLAP evolution of parton densities ⇒	 measure gluon PDF

Determination of parton densities, electron & neutrino scattering in 
DIS, now also via new LHC data 

Recent progress in PDF: NNLO evolution, NNpdf, heavy quarks

Future challenge: fully coupled QCD-EW evolution
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Next: Perturbative calculations

29

Next, we will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issues with divergences

current status, sample results 



Next: Perturbative calculations
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Next, we will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issues with divergences

current status, sample results 

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

� � A + B�s + C�2
s + D�3

s + . . .

LO NLO NNLO NNNLO



Perturbative calculations

• Perturbative calculations = fixed-order expansion in the coupling 
constant, or more refined expansions that include terms to all orders

• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• Let’s consider some examples 
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

31



Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

31

• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

�LO
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

�LO
njets(µ) = �s(µ)nA(pi, �i, . . .)

�LO
njets(µ)

�LO
njets(µ�)

=
�

�s(µ)
�s(µ�)

�n

• Notice that at Leading Order the normalization is not under control:
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• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 
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NLO n-jet cross-section

Now consider n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large 
logs and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since a compensation mechanism kicks in  

• Scale variation is conventionally used to estimate the theory uncertainty, 
but the validity of this procedure should not be overrated (see later) 

32
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Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 

33



Leading order with Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

× = +× ×∑ ∑
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)

Britto, Cachazo, Feng ’04
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04

-
+

+
+

+- +

-

-

-
-

+ -
+ -

✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)

Britto, Cachazo, Feng ’04

=∑ +∑-
+

+
-

× = +× ×∑ ∑
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Matrix element generators

Fully automated calculation of leading-order cross-sections: 

‣ generation of tree level matrix elements

- Feynman diagrams [CompHEP/CalcHEP, Madgraph/Madevent, 
HELAS, Sherpa, ... ]

- Helicity amplitudes + off-shell Berends-Giele recursion [ALPHA/
ALPGEN, Helac, Vecbos]

‣ phase space integration

‣ interface to parton showers

35

These codes are currently used extensively in many analysis of LHC data  
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Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

large scale dependences, reflecting large theory uncertainty

no control on normalization

poor control on shapes

poor modeling of jets

Drawbacks of LO:



Next-to-leading order

• reduce dependence on unphysical scales 
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We’ll look at a few concrete examples in few minutes
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A full N-particle NLO calculation requires:
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set of subtraction terms to cancel divergences  

Ingredients at NLO

tree graph rates with N+1 partons 
➔ soft/collinear divergences 

A full N-particle NLO calculation requires:

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization Bottleneck for a long 

time. Now understood 
how to compute this 

automatically

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction
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Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularizatiom has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.
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Renormalization: a global redefinition of couplings and masses which 
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Renormalization schemes

Renormalization: a global redefinition of couplings and masses which 
absorbs all UV divergences.  Several schemes are possible (MS, MS, OS ...). 

• Take two different renormalization schemes of the QCD bare 
coupling as 

�ren,A
s = ZA�0

s , �ren,B
s = ZB�0

s

�ren,B
s = �ren,A

s (1 + c1�
ren,A
s + . . . )

• Infinite parts of renormalization constants must be the same, therefore 
renormalized constants must be related by a finite renormalization 

• Note that as a consequence of this, the first two coefficients of the  
β-function do not change under such a transformation, i.e. they are 
scheme independent. This it not true for higher order coefficients.
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• Today’s standard scheme: modified minimal subtraction scheme, MS

The MS scheme

• After regularizing integrals via the dimensional regularization, poles 
appear always in the combination   

• Therefore in the MS-scheme, instead of subtracting poles minimally, 
one always subtracts that combination, and replaces the bare 
coupling with the renormalized one  

1
�

+ ln(4�)� �E

• It is then standard to quote the coupling and ΛQCD in this scheme, 
the current value is 

206MeV < �MS(5) < 231MeV

• Uncertainties in this quantity propagate in the QCD cross-sections 
41



Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ obsolete because of practical/numerical issues

- subtraction method ⇒ most used in recent applications

�J
NLO =

�

n+1
d�J

R +
�

n
d�J

V
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M�
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D = 4-2ε 
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• The n-jet cross-section becomes 

Subtraction method
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• KLN cancelation guarantees that 

lim
x�0
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• Infrared safety of the jet definition implies 

lim
x�0

F J
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• One can then add and subtract the analytically computed divergent part 
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Subtraction method

• This can be rewritten exactly as 

�J
NLO =

� 1

0

dx

x1+�
M(x)

�
F J

1 (x)� VF J
0

�
+O(1)VF J

0

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematized in the seminal papers of Catani-Seymour (dipole 
subtraction, ’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes 
(Event2, Disent, MCFM, NLOjet++, MC@NLO, POWHEG ... ) 
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Approaches to virtual (loop) part of NLO

Two complementary approaches:

‣ Numerical/traditional Feynman diagram methods: 
use robust computational methods [integration by parts, reduction 
techniques...], then let the computer do the work for you  

Bottleneck: 
factorial growth, 2 → 4 doable, difficult to go beyond

‣ Analytical approaches: 
improve understanding of field theory [e.g. generalized unitarity, 
recursions, OPP, Open Loops ... ]

Status: 
moving towards more legs (5 or 6 in the final state) + towards full 
automation [GoSam, MadLoop]
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Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Two breakthrough ideas

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately
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Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν
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∑
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∑
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1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Two breakthrough ideas

Coefficients can be determined by solving system of equations: no 
loops, no twistors, just algebra!
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The 2007 Les Houches wishlist
Process Comments

(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [3];

Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [8]

andWWZ by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 2005

4. pp → tt̄ bb̄ relevant for tt̄H
5. pp → tt̄+2jets relevant for tt̄H
6. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by

(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]

8. pp → V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp → bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLO pp → tt̄ normalization of a benchmark process

12. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes

5

}

The NLO multi-leg Working 
group report 0803.0494

with Feynman diagrams
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‣ improved stability of NLO result [but no decays]
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Figure 1. Scale dependence of the LO and NLO cross sections for tt̄+ 1-jet production at the Tevatron (left) and
the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.

section contributions σ(yt >
< 0) correspond to top-

quarks in the forward or backward hemispheres, re-

spectively, where incoming protons fly into the for-

ward direction by definition. Denoting the corre-

sponding NLO contributions to the cross sections by

δσ±NLO, we define the asymmetry at NLO by
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i.e. via a consistent expansion in αs. Note, however,

that the LO cross sections in Eq. (2) are evaluated in

the NLO setup (PDFs, αs). The results for the asym-

metry for different scale choices are shown in Fig. 2.

At LO we find an asymmetry of about −8%. The
scale dependence is rather small. This is a conse-

quence of the fact that αs cancels exactly between the

numerator and the denominator. In addition the resid-

ual factorization scale dependence also cancels to a

large extent in the ratio. At NLO we find a large cor-

rection compared to the LO result. The asymmetry

is almost washed out at NLO. The scale dependence

is increased in NLO which seems natural given the

small dependence in LO. To investigate the origin of

the large NLO corrections to the asymmetry we stud-

ied the dependence on pcutT , the minimal pT used to

resolve the additional jet. The results are shown in

Tab. 1. A strong dependence of the cross section on

pcutT is observed. For all pcutT values we find that the

NLO corrections to the cross section are of moderate
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Figure 2. Scale dependence of the LO and NLO
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quark in pp̄→ tt̄+jet+X at the Tevatron as taken from
Ref. [34] with µ= µf = µr.
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Example of NLO result: tt+1jet

‣ forward-backward asymmetry at the Tevatron compatible with zero

‣ essential ingredient of NNLO tt production

Dittmaier, Kallweit, Uwer ’07-’08



Automated NLO
Alwall et al ’14
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• few years ago: each item in each table resulted in a paper. Now, as for 
leading order, just run a code and get the results (also for distributions) 

• possibility to do precise studies of signal and backgrounds using the 
same tool (very practical + avoid errors)

• what lead to this remarkable progress? the fact that 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2.one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

Automated NLO

62

But for item 2. everything was there since the time of Passarino-Veltman 
(even item 2. was understood, but no efficient/practical method exited). 
We will now compare this to the current status of NNLO 



NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- paramount example: Higgs production
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NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- paramount example: Higgs production

when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...

when a reliable error estimate is needed 
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Some history of NNLO

first NNLO computation of a collider process was inclusive Drell-Yan  
production by Hamberg, van Neerven and Matsuura in ’91  

second NNLO calculation: Higgs production in gluon-gluon fusion by 
Harlander and Kilgore in ’02 

Both calculations refer to inclusive, total cross-sections that are not 
measurable 

first exclusive NNLO computation (for fiducial volume cross-sections) 
was Higgs → 𝛾𝛾 in ’04 by Anastasiou, Melnikov and Petriello, followed by 
other exclusive calculations of Higgs and Drell-Yan processes

only last year NNLO corrections to 2 → 2 processes also with QCD 
partons in the final state started to appear.  This indicates a more 
complete understanding of NNLO 

Many things at NNLO are new and took a while to understand. Today’s 
technology is likely not to be finalized yet
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Ingredients for NNLO 
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Remember crucial steps for automated NLO were 

1. leading order can be computed automatically and efficiently (e.g. via 
recursion relations) 

2. one can reduce the one-loop to product of tree-level amplitudes
3. it was well understood how to subtract singularities 
4. the basis of master integrals was known 

At NNLO the situation is very different
1. leading order of very limited importance  
2. no procedure to reduce two-loop to tree-level (unitarity approaches 

at two face still many outstanding issues)
3. subtraction of singularities far from trivial 
4. basis set of master integrals not known, integrals not all/always 

known analytically
And all this for simple processes (no result exist, or has been attempted, 
for any 2 → 3 scattering process) 



Ingredients for NNLO
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What changed in the last years

1. technology to compute integrals
2. extension of systematic FKS subtraction to NNLO 



Two-loop virtual 
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Complexity increases with 

1. number external particles (topology)
2. number of kinematic invariants                                                      

(pipj and masses, however more singularities for massless particles)

Standard procedure

1. start from Feynman diagrams
2. reduce integrals by integration by parts identities (IPB)
3. compute master integrals

While at one-loop there is a well-defined algebraic procedure to reduce 
tensor integrals to master integrals (e.g. Passarino-Veltman reduction), at 
two-loop integrals must be brought in the right form first, so that scalar 
products involving the loop momentum can be canceled with propagators

⇒ process-specific algebra on the Feynman diagrams (cumbersome)



Two-loop virtual 

68

Unlike one-loop, the reduction of two-loop integrals to master is non-
trivial

Last ten years: large effort devoted to automate IBP. Now public code 
exist [FIRE, REDUZE]

Also calculation of master integrals not straightforward. Still done on a 
case-by-case basis. 

Recently, many interesting developments. Let me mention a new approach 
based on Henn’s conjecture (strategy: compute Feynman integrals using 
differential equations, crucial to choose basis where eqs are simple) 

X Henn ’13



Collider processes known at NNLO

1. Drell-Yan (Z,W) (inclusive)

2. Higgs (inclusive)

3. Higgs differential

4. WH/ZH total cross-section 

5. di-photon production 

6. H+1jet 

7. top-pair production

8. inclusive jets 

9. Z/W + photon 

10.ZZ 

11.t-channel single top                
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X van Neerven ’90 

X Harlander et al ’02; Anastasiou et al  ’02; Ravindran et al ’03

X Anastasiou et al ’04; Catani et al ’07

 X Brein et al ’04; Ferrera et al ’11

X Catani et al ’11

X Boughezal et al. ’13

X Czakon et al ’13 

X Currie et al. ’13

X Grazzini et al. ’13-14

X Cascioli et al. ’14 

X Bruscherseifer ’14

NB: this list is growing really quickly now ... 



Drell-Yan processes

Drell-Yan processes: Z/W production (W → lν , Z → l+l-)

Very clean, golden-processes in QCD because

✓dominated by quarks in the initial state

✓no gluons or quarks in the final state (QCD corrections small)

✓ leptons easier experimentally (clear signature) 

⇒	 as clean as it gets at a hadron collider

P1

P2

fq(x1)

fq(x2)
x2P2

x1P1

��, Z

l�

l+
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  NLO

Drell-Yan 

most important and precise test of the SM at the LHC

with spin-correlations, finite-width effects, γ-Z interference, fully 
differential in lepton momenta 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06Figure 4: More general variations of the renormalization and factorization scales, for production
of an on-shell Z boson at the LHC, at central rapidity Y = 0. For each order in perturbation
theory (LO, NLO, NNLO), three curves are shown. The solid curves depict common variation of
the renormalization and factorization scales, µF = µR = µ, as used in the rest of the paper, but
extending the range of variation to M/5 < µ < 5M . The dashed curves represent variation of the
factorization scale alone, holding the renormalization scale fixed at M . The dotted curves result
from varying the renormalization scale instead, holding the factorization scale fixed at M .

sections. These corrections are the dσ(2)/dY terms defined in Eq. (4.1) (after renormal-

ization and mass factorization), convoluted with the MRST PDFs and with all partonic

channels included. We vary the scale in these terms, and normalize this variation to the

NLO cross section. We find that the NNLO corrections contribute a scale dependence

of ≈ 5% at central rapidities. When we form the complete NNLO cross section, which

requires adding these corrections to the convolution of the dσ(0)/dY and dσ(1)/dY terms

of Eq. (4.1) with NNLO PDFs, the width of this band is decreased to less than 1%. This

demonstrates a remarkable interplay between NNLO calculations and parton distribution

functions.

The small size of the NNLO corrections is partly due to large cancellations between

the various partonic channels. To illustrate this, we present in Fig. 6 the fractional contri-

butions of the various NNLO partonic corrections to the entire NNLO cross section, at Run

I of the Tevatron. We include the qg and qiqj channels (the latter includes qq and qq̄ inital

states); the gg subprocess is numerically unimportant in this process. The magnitude of

each order α2
s partonic correction, δσij , can be 7–8% of the complete NNLO cross section,

– 30 –

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD
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Scale stability and sensitivity to PDFs
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demonstrates a remarkable interplay between NNLO calculations and parton distribution
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Drell-Yan: rapidity distributions 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06

Gauge boson production at the LHC

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello (03)

At LHC NNLO perturbative accuracy better than 1%

⇒ could use to determine parton-parton luminosities at the LHC

Recent developments in QCD – p. 32

☛ at the LHC: perturbative accuracy of the order of 1%
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NNLO vs LHC data

Impressive agreement between experiment and NNLO theory  
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