

Shikma Bressler, AD, Aielet Efrati arXiv:1405.4545

Neutrinos oscillate. Lepton Flavor is broken in Nature.

$$U(1)_e \times U(1)_{\mu} \times U(1)_{\tau}$$

Neutrinos oscillate. Lepton Flavor is broken in Nature.

$$U(1)_e \times U(1)_{\mu} \times U(1)_{\tau}$$

The Higgs discovery provides us with a new arena to probe LFV processes <u>directly</u>.

Neutrinos oscillate. Lepton Flavor is broken in Nature.

$$U(1)_e \times U(1)_{\mu} \times U(1)_{\tau}$$

The Higgs discovery provides us with a new arena to probe LFV processes directly.

Existing indirect constrains on Yukawa couplings:

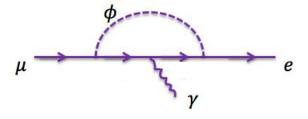
Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2$, $ c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2, c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e\gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2, c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e\gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

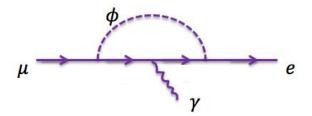

Blankenburg et al. arXiv: 1202.5704 [2]

Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2$, $ c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e \gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

 $Y_{e\mu}$ is extremely small.



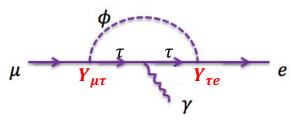
Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2, c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e \gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

 $Y_{e\mu}$ is extremely small.

On the other hand, $Y_{\tau\mu}$, $Y_{\tau e}$ are very weakly constrained:

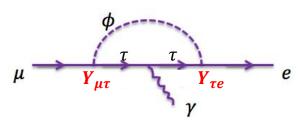

$$Br(h \to \tau \mu), Br(h \to \tau e) \le 20\%$$
!

Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2, c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e\gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

The same bound strongly constrains the product of the other two off-diagonal Yukawas.


$$|Y_{\mu\tau}Y_{\tau e}| < 1.7 \times 10^{-7}$$

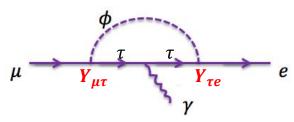
Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2, c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e\gamma) < 3.3 imes 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

The same bound strongly constrains the product of the other two off-diagonal Yukawas.

$$|Y_{\mu\tau}Y_{\tau e}| < 1.7 \times 10^{-7}$$

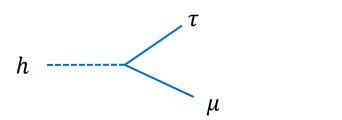

=> EITHER $h \to \tau \mu$ exists OR $h \to \tau e$ exists, but not both!

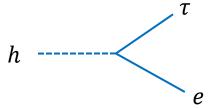
Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2$, $ c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(au o e \gamma) < 3.3 imes 10^{-8}$

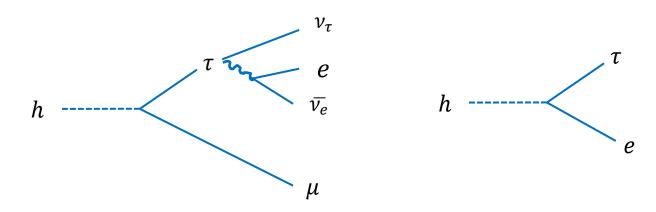
MEG Collaboration, arXiv:1303.0754 [1]

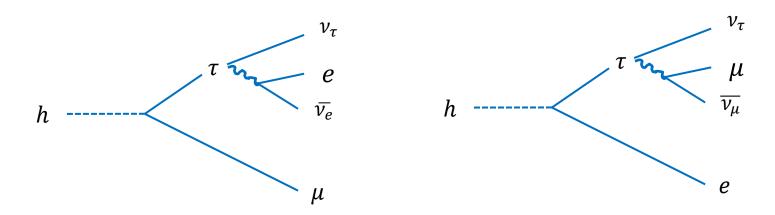
Blankenburg et al. arXiv: 1202.5704 [2]

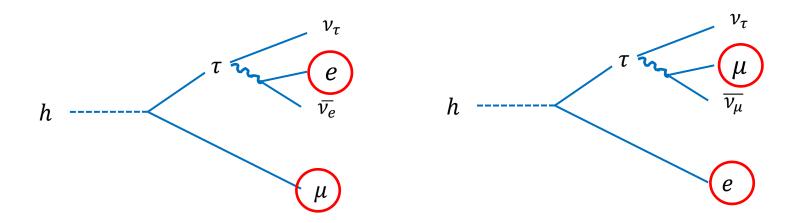
The same bound strongly constrains the product of the other two off-diagonal Yukawas.

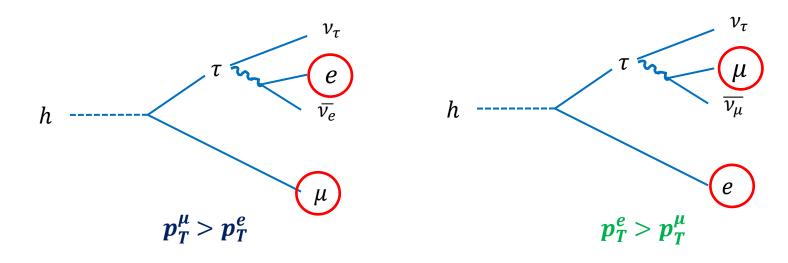


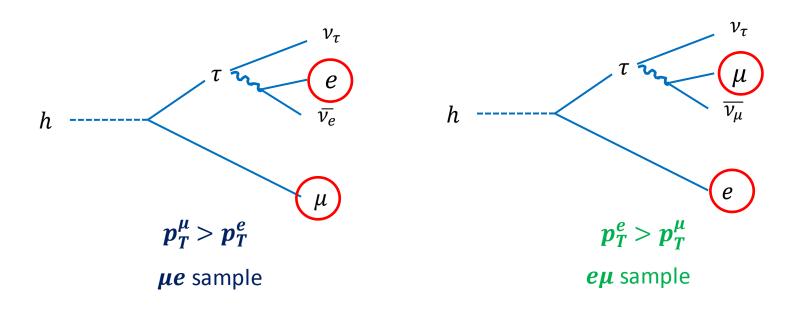

$$|Y_{\mu\tau}Y_{\tau e}| < 1.7 \times 10^{-7}$$

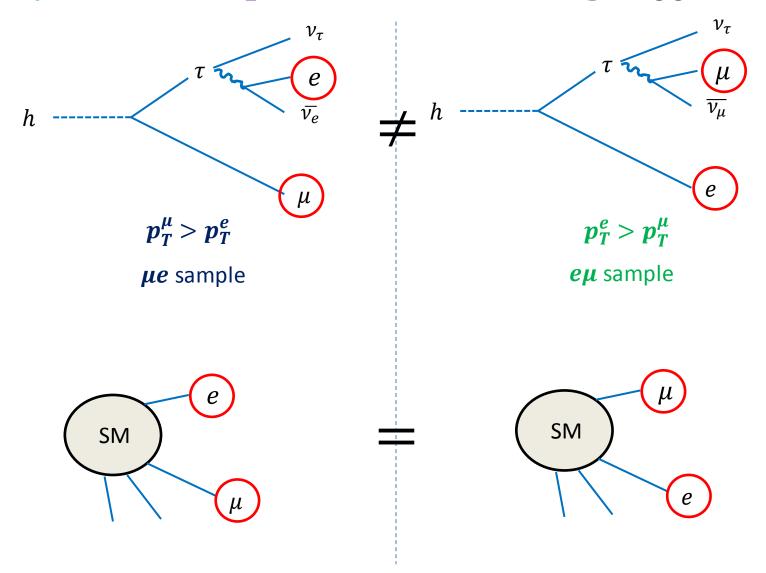

=> EITHER $h \to \tau \mu$ exists OR $h \to \tau e$ exists, but not both!

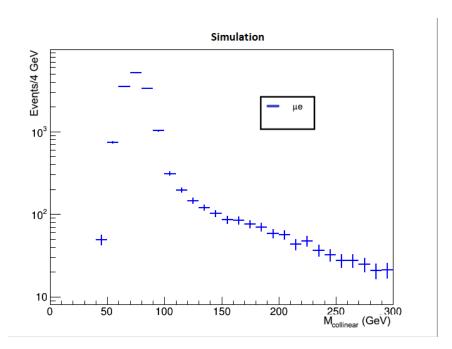

(or, neither exists in observables rates... shhhh)

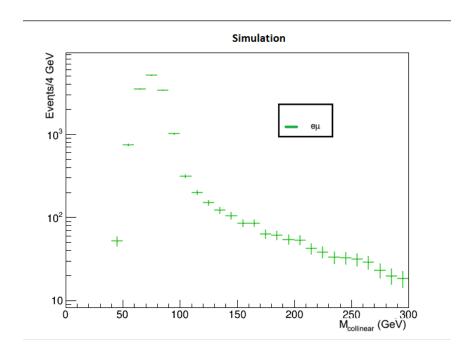

We developed a method to search for <u>both these decays simultaneously</u>, using two mutually exclusive data samples in the same analysis and extracting a BG estimation directly from them (<u>no MC</u> involved!)



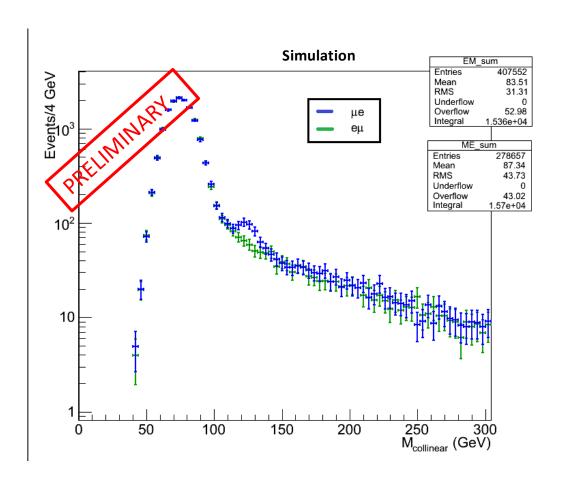




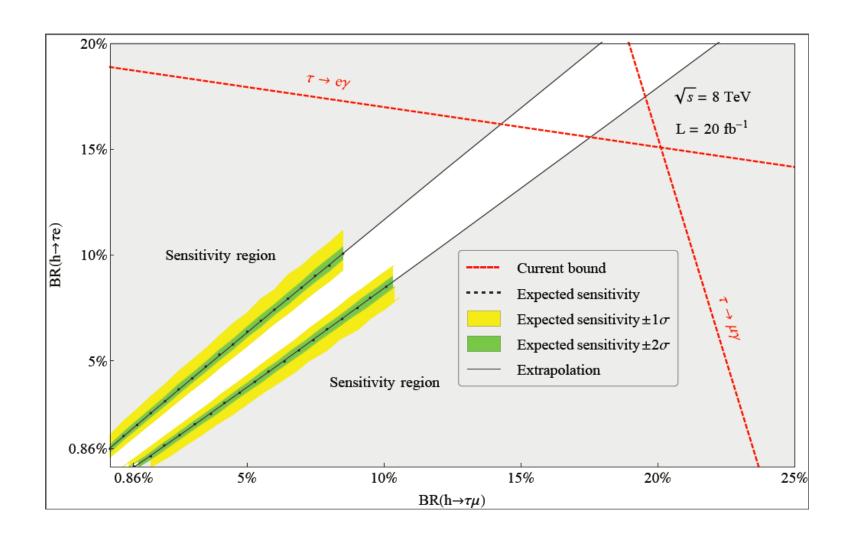


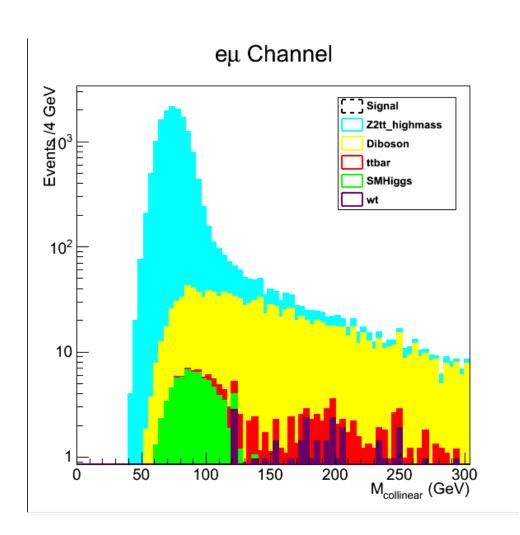

- Experimentally, electrons and muons are very different objects:
- trigger / reconstruction efficiencies
- Fake rates
- Bremsstrahlung
- Energy resolution
- ...

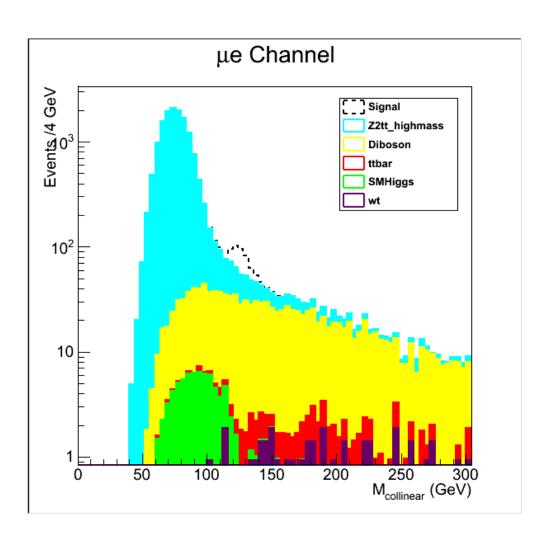
The fact that we have <u>both objects in the final states</u> preserves the symmetry at leading order.


μe sample

*e*μ sample




SM Background



SM Background + $h o au \mu$ signal

Questions Please

(charged) Lepton Flavor Violation

(and the Higgs)

The Higgs was discovered. (have you heard??)

⇒ A new arena for Flavor Physics

$$L = Y_{ij}h\overline{L}_iL_j$$

Within the SM:

$$\frac{Y_{\tau\tau}}{Y_{\mu\mu}} = \frac{m_{\tau}}{m_{\mu}} \approx 10; \qquad Y_{\tau\mu} = Y_{\tau e} = 0$$

Very recent results of ATLAS & CMS provide a first look at the flavor structure of the couplings:

*
$$\left| \frac{Y_{\tau\tau}}{Y_{\mu\mu}} \right| > 5$$

[ATLAS-CONF-2013-108] [CMS PAS HIG-13-007]

Could there also be <u>non-diagonal</u> couplings (=Flavor Violation)?

$$h = \frac{\tau^{\pm}}{\mu^{\mp}}$$

Leptons

neutral

charged

^{*} Assuming SM $pp \rightarrow h$ production, at 2σ