Lifetrac Introduction

A.Valishev (FNAL) 10 November 2013

Lifetrac history

- Author Dmitry Shatilov (BINP)
- Development started in ~1995
 - D. Shatilov, Beam-beam simulations at large amplitudes and lifetime determination, Part. Accel. 52 (1996) p. 65.
 - Since then used for design and performance improvements at
 - VEPP-4 (BINP), DAFNE (INFN/LNF), VEPP-2000 (BINP), KEKB (KEK)
- Initial design for electron-positron colliders
 - Key feature: determine the equilibrium distribution with radiation damping, quantum excitation and beam-beam

Lifetrac history II

- Tevatron Run II (2001-2011) beam-beam major performance limiting factor
- Code modification started in 2003 to accommodate non-equilibrium distributions
 - Emphasis made on usefulness of simulations for real machine tuning and improvements
 - About a dozen real applications of the simulations for explanation of problems and planning upgrades. In each case the simulation predictions worked well.
 - As such, the easily measurable observables were determined
 - Intensity lifetime (better than 1% measured in real machine)
 - Emittance blowup (~10% resolution from SR, bunch-bybunch)
 - Luminosity degradation (~1% bunch-by-bunch)

Lifetrac design

- Core of the code single-particle tracking
- Normal mode of operation macroparticle beam (typically 10,000 particles) tracked for 10⁶-10⁷ turns
 - Aperture restrictions (collimators) register particle losses and give beam lifetme
 - Emittances computed for the ensemble with averaging over ~10,000 turns (better statistics)
 - Luminosity calculated numerically as a convolution of the macroparticle ensemble with analytical bb of strong beam
- Results can be compared directly with operations

Lifetrac design

- Treatment of the machine lattice
 - Initially 6D linear maps between IPs and other devices
 - Sufficient for most needs, especially Tevatron where dynamics was beam-beam dominated. Chromaticity was treated through 'tricks' but was symplectic and well agreed with observations

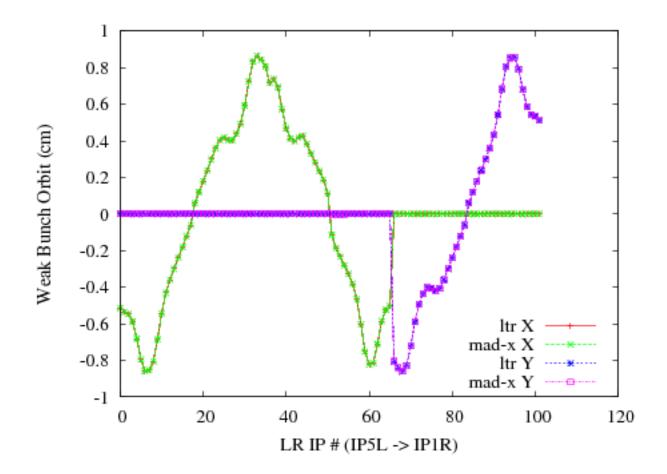
- Since 2012 - full element-by-element thin lens

- Many physics devices implemented
 - Electron Lenses of various types
 - Crab Cavities (tested by DS at KEKB)
 - Wire Compensators
 - Collimators (in principle, can model loss maps)
 - Special magnets (for Integrable Optics)
 - etc.

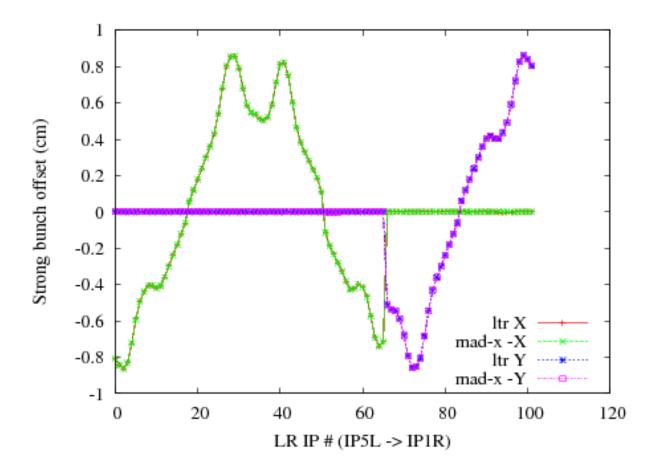
Lifetrac design

- Recently added features
 - FMA (2007)
 - Dynamic Aperture (2011)
 - mad-x –to– lifetrac lattice conversion (2012-2013)

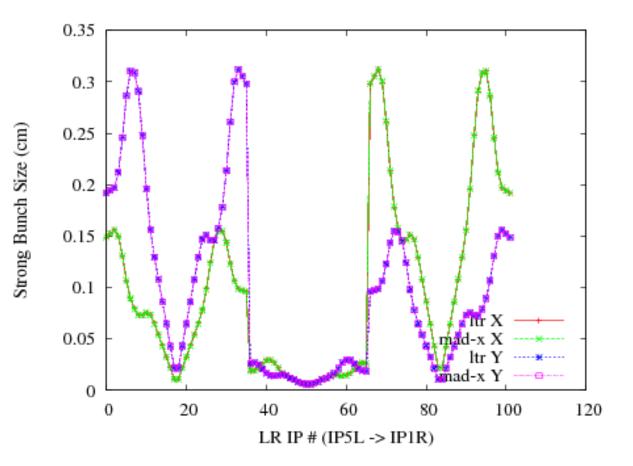
MAD-X to Lifetrac

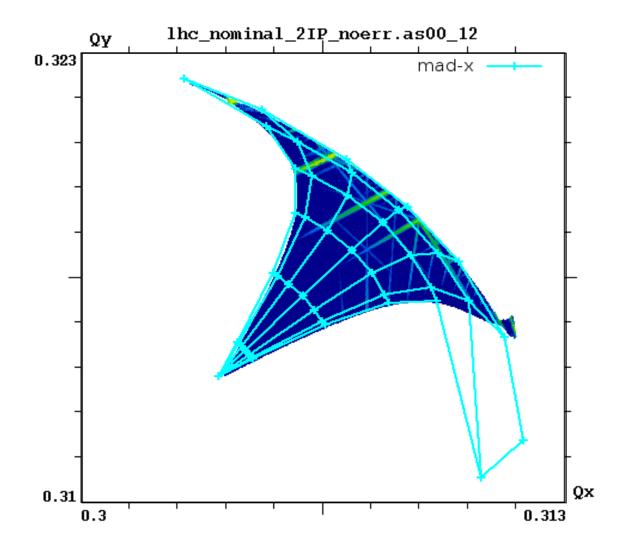

- Begin with the thin-lens mask file
- Use twiss with default format to dump the full lattice for weak beam
 - this prints all relevant element information (L for drifts, KNL, KSL for multipoles, KICKs for correctors, VOLT for cavities, KS for solenoids, etc.

– also put markers at locations of IPs


• For strong beam, use mylhcbeam=2 and dump lattice data (betax, betay, dx, dy, offsets) at IPs

parameters of IPs are then calculated from these


Verification with mad-x


Verification with mad-x

Verification with mad-x

mad-x footprint and FMA LHC Nominal

Known differences with SixTrack

- Different definition of beam sigma
 - SixTrack uses analytical maps to find normal mode matrix
 - Beam-beam is included into normal mode (in Lifetrac – not!)
 - Hence, the sigma may be different if dynamic beta is significant
 - Not obvious how one implements analytical linear maps for 6D beam-beam
- Different definition of DA
 - Action in sixtrack is determined through averaging
 - Initial value in Lifetrac

What we should look at?

• Footprints

– easy computed, can benchmark with mad-x

- Details of single-particle motion in physical coordinates
 - This will eliminate the problems of defining sigma and DA