Hadron Injector Options

B. Goddard and W. Herr

With plenty of input from:

W.Bartmann, M.Benedikt, L.Bottura, B.Holzer, M.Meddahi, E.Metral, A.Milanese, G.Rumolo, D.Tommasini, ...

Main objectives and outline

Injector chain to fill collider (FCC-hh) with more than 20000 high brightness bunches

- General considerations
- Possible options:
 - Expected parameters
 - Advantages and disadvantages
- Required topics for studies and R&D programme to single out most promising option(s) for a design study

"use existing facilities, previous efforts/studies"

Previous studies: SSC (1992)

	E range	$rac{E_{extr}}{E_{inj}}$	cycle rate	p/bunch	
Linac H ⁻	0 - $0.6~{ m GeV}$	-	10 Hz	$1.0 10^{10}$	NC
LEB	0.6 - $11~{ m GeV}$	18.3	$10~\mathrm{Hz}$	$1.0 10^{10}$	NC
MEB	11 - 200 GeV	18.2	$0.125~\mathrm{Hz}$	$1.0 10^{10}$	NC
HEB	0.2 - $2.0~{ m TeV}$	10	$pprox 10 \; ext{mins}^{*)}$	$1.0 10^{10}$	\mathbf{SC}
Collider	2.0 - $20~{ m TeV}$	10	-	$0.75 10^{10}$	SC
HEB	0.2 - 2.0 TeV	10	$pprox 1 \; ext{min}^{**)}$	\geq 1.0 10^{10}	\mathbf{SF}

See e.g.: G. Dugan, SSCL-Preprint-84

Apply rule of "twenty" for energy increase: $\frac{E_{extr}}{E_{inj}} \le 20$

- *) Filling two collider rings. Alternating, bipolar operation ! ≈ 10 injection cycles to fill SSC ring.
- **) Design option 1985, 2-in-1 magnets.

Is SSC study relevant?

Try a näive scaling:

	SSC	scaled SSC (\times 2.5)
LEB	11 GeV	$27~{ m GeV}$
MEB	$200~{ m GeV}$	$500~{ m GeV}$
HEB	2 TeV	$5 \mathrm{TeV}$
Collider	20 TeV	$50 \mathrm{TeV}$

Emittance requirements

Emittance budget (for nominal intensity) in SSC/LHC [μ m]:

	SSC design		LHC	design
	emittance in	emittance out		extracted
$\begin{array}{ c c c } \textbf{Linac} \ \textbf{H}^- \end{array}$	0.2	0.3	Linac2	1.0
LEB	0.3	0.6	PSB	2.5
MEB	0.6	0.7	\mathbf{PS}	3.0
HEB	0.7	0.8	SPS	3.5
Collider	0.8	$1.0~(\mathcal{L}~ ext{target})$	LHC	3.75

Can assume similar performance or better (present LHC is better due to injector perfomance, but not yet at 7 TeV and 25 ns spacing)

Possible injector chain

- Assumption: not a completely new injector chain
- Relying on existing (upgraded) facilities up to SPS (at least in a first step)
- Have to build High Energy Booster (HEB)

Assumptions

- Energy of collider (maximum 50 TeV)
 - Reuse existing facilities as much as possible (no additional tunnel)
 - Can maintain intensity and brightness as provided for HL-LHC ($\leq 2.5 \cdot 10^{11} \text{ p/b}, \, \epsilon_n \, \approx \, 2 \, \mu \text{m}$)
 - Assumed bunch spacing 25 ns, \approx 11000 bunches per beam in collider, relevant for number of injections
 - HEB must inject <u>two</u> beams into collider at reasonably short filling time, implications for complete injector chain
 - Reasonably short: unknown

Present machines and available/planned tunnels

- No new tunnel, put HEB in available tunnel

Parameter	SPS	LHC	collider
	(present)	(present)	
Circumference [m]	6912	26659	100000
Number of dipoles	744	1232	4400
Dipole length [m]	6.2	14.3	15
Inj. dipole field [T]	0.12	0.53	1
Max. dipole field [T]	2.03	8.33	16
Ramp time [s]	10.8	1100	
Ramp rate [T/s]	0.177	0.007	

Key issues for all options

- Injection and extraction energy
- Dipole field, number of dipoles, technology
- Operational cycle
 - Injection of two beams into collider
 - Ramping time and collider filling time (number of bunches and injections (HEB size), injector chain cycle time)
- Stored energy in HEB and transfer lines

Optimum energy of HEB

- Assuming SPS as candidate for MEB (0.45 TeV)
- Energy increase factor less than 20 for collider (LHC is 16), but several ramps required for HEB
- For reasonable collider energy range: HEB to provide 3.0 4.0 TeV
- Energy increase factor in HEB modest (≤ 8)
- Energy one of the two critical key parameters to be defined

Magnet technology options

Type	B_{max} [T]	\dot{B} [T/s]	B_{max}/B_{min}
Norm. Cond.	2.0	4	40
Superferric	2.5	2	40
SC (NbTi), low field	5.0	1.4	15
SC (NbTi), high field	9.0	0.2	15
SC (Nb3Sn)	16.0	0.025	15

Existing at CERN and operational:

Type	B_{max} [T]	\dot{B} [T/s]	B_{max}/B_{min}
SPS (NC)	2.0	1	28.6
LHC (NbTi)	8.33	0.007	15.6

Challenges for all options

- Preservation of transverse emittance, vital for luminosity and beam-beam effects (through whole injector chain)
- Field imperfections and dynamic effects from fast ramping
- Filling time of collider, beam dynamics and operation First clue 10 min (LHC), conservative
- Availability (several successive ramps required)
- Possible collective effects

Transfer of two beams to collider

- Options are:
 - Two-in-one magnet design*)
 - bipolar operation of HEB
 - unipolar operation of HEB
- Dipole field and technology considerations
- Implications for layout and operation (easy injection, injection sequence, beam transfer, ...)
- Avoid very long transfer lines for high (3.2 TeV) energy

*) Fixed target operation or collisions in HEB??

Alternative use of HEB

In case alternative use of HEB is considered:

- Fixed target operation
 - Slow extraction?
 - Total intensity?
 - Ramp rate and availability?
- As collider:
 - Lifetime?
 - Collimation ?
 - Insertions for experiments?

Detailed studies needed ...

Collective effects

- Need to be studied to control beam brightness
- Detailed studies required
 - Space charge, IBS (in particular for 100 km option)
 - Impedance
 - Electron cloud (HEB)
 - Electron cloud (collider)
 - Implications for ions?

Possible strategies to use existing facilities

- HEB in SPS tunnel
- HEB in LHC tunnel
 - New machine for lower energy (new magnets)
 - Re-use LHC as HEB?
- HEB in collider tunnel

Most layout and beam parameters follow from the choice

Option: HEB in SPS tunnel

	SC Very high	SC High	SC Low
Parameter	field	field	field
E_{inj} [TeV]	0.45	0.45	0.45
E_{top} [TeV]	3.5	2.0	1.1
collider inj. field [T]	1.12	0.63	0.35
B_{inj} [T]	2.09	2.09	2.09
B_{top} [T]	16.0	9.0	5.0
Type	Nb3Sn	NbTi	NbTi
Ramp rate [T/s]	$\boldsymbol{0.025}$	0.20	1.40
Extractions to collider	14	14	14
Est. filling time [min]	243	23	8
Stored energy (MJ)	40.4	22.8	12.7

Option: HEB in SPS tunnel

- Pros:
 - MEB to HEB transfers (same lengths)
 - Number of dipoles and cost
 - Stored energy
- Contras:
 - Dipole field (\geq 12 T)
 - Required extraction energy only with SC Very High Field (low ramp rate)
 - HEB to collider extractions (number and transfer lines)
 - Collider filling time very long
 - No scope for higher energy upgrade

Option: HEB in LHC tunnel

	Present LHC	SC low		
Parameter	SC high field	field	\mathbf{SF}	NC
E_{inj} [TeV]	0.45	0.45	0.45	0.45
E_{top} [TeV]	6.5	4.2	2.1	1.7
collider inj. field [T]	2.08	1.34	0.67	0.67
B_{inj} [T]	0.54	0.54	0.54	0.54
B_{top} [T]	7.7	5.0	2.5	2.0
Type	\mathbf{NbTi}	\mathbf{NbTi}	\mathbf{SF}	NC
Ramp rate [T/s]	0.007	1.40	2.00	4.0
Extractions to collider	4	4	4	4
Est. filling time [min]	76	9	9	9
Stored energy (MJ)	266	172	86	70

HEB in LHC tunnel

Pros:

- Dipole field ($\leq 5 \text{ T}$)
- Stored energy
- Collider filling time, number of cycles smaller for 2-in-1 magnets

Contras:

- Too low extraction energy for SF and NC
- Cost (new magnets)
- Transfer lines for 3 4 TeV
- Collider filling time for high energy/field option

Option: HEB in collider tunnel

Parameter	SF	\mathbf{NC}
E_{inj} [TeV]	0.45	0.45
E_{top} [TeV]	8.0	6.4
B_{inj} [T]	0.14	0.14
B_{top} [T]	2.5	2.0
collider inj. field [T]	2.56	2.05
Ramp rate [T/s]	2.0	4.0
Extractions to collider	1	1
Est. filling time [min]	10	10
Stored energy	1382	1106

HEB in collider tunnel

Pros:

- Dipole field (\leq 2.5 T, or smaller filling factor), higher extraction energy
- Single extraction and ramp to fill collider
- Option for SF or NC dipoles (ramp rate, does it matter?)

Contras:

- Beam dynamics: low injection energy and longer filling time to fill HEB (stability? needs study) i.e. filling 100 km of LHC with 4 times the filling time
- Cost (length, number of dipoles and other systems), integration of collider experiments

Reuse LHC as HEB

LHC becomes injector

Attractive for several reasons, but studies needed:

- Modified and simplified lattice layout (synchrotron, no low- β insertions), use of existing extraction concept
- Increased ramp rate (10 A/s \rightarrow 50 100 A/s ?) for smaller than nominal top energy (e.g. 3 4 TeV)? (check all implications !)
- Decommisioning of insertion regions

Reuse LHC as HEB

Pros:

- Understood machine, modified as synchrotron
- Low energy increase factor (7 8)
- Acceleration of two beams (reduced filling time)
- Possibility to do experiments and tests now (e.g. cycle strategy)!!

Contras:

- Long cycle time (unless improved ramp rate, 50 A/s probably sufficient)
- Beam transfer at 3.5 TeV and new layout
- New powering, Voltage limits, induced quenches, QPS, ramping strategy
- Usable for fixed target physics?

Additional thoughts (LHC or LHC tunnel)

- Performance for <u>initial</u> operation:
 - A 2-in-1 machine in LHC tunnel can fill 25% of the FCC-hh in single extraction (one ramp)
 - Option: LHC as is with extraction system
 - Using HL-LHC beam parameters and present injector chain
 - For initial operation: provides $\mathcal{L}~\approx$ 1.5 $10^{34}~\mathrm{cm^{-2}s^{-1}}$
 - No need to increase ramp speed (one ramp)

Need to define/study as input (I):

- Injection energy into collider (will largely determine the choice)
- Dwell time at injection energy (defines the filling time, unknown)
- Choice of energies in injector chain
- Alternative use of HEB (collider, fixed target beams)
- Lepton-proton collisions?

Need to define/study as input (II):

- Beam transfer layout (injection energy and transferred energy)
- Limitations due to collective effects (e.g. e-cloud)
- Ramp rate of existing LHC magnets, powering, cycling, cryogenics power

Many options.

A cost and feasibility studies needed for all options. Some of the options appear not very promising, may be ruled out rather quickly. For a detailed study should reduce to 2 or 3 most promising.