

FCC-ee: possible synergies with CLIC detectors

Outline

- Detector requirements
- Challenges/technologies in vertex/tracking detectors
- Challenges/technologies in calorimetry
- Some considerations for FCC-ee
- Synergies
- Outlook

Apologies, some lack of time to prepare this talk.
In the future we can go one-by-one over individual items (e.g. performance requirements, technology choices, advantages-drawbacks, sharing of SW tools, collaboration on technology development.

Country	Partner	in the IB	signatur
Australia	Australian Collaboration for Accelerator Science (ACAS)	M. Boland	pdf
Belarus	NC PHEP, Belarusian State University, Minsk	K. Afanaciev	pdf
Chile	The Pontificia Universidad Católica de Chile, Santiago	M.A. Diaz Gutierrez	pdf
Czech Republic	Institute of Physics of the Academy of Sciences of the Czech Republic, Prague	T. Lastovicka	pdf
Denmark	Department of Physics and Astronomy, Aarhus University	U. Uggerhoj	pdf
France	Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Annecy	Y. Karyotakis	pdf
Germany	MPI Munich	F. Simon	pdf
Israel	Tel Aviv University	A. Levy	pdf
Norway	University of Bergen	G. Eigen	pdf
Poland	Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow	M. Idzik	pdf
Poland	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow	L. Zawiejski	pdf
Romania	Institute of Space Science	T. Preda	pdf
Serbia	Vinca Institute for Nuclear Sciences, Belgrade	I. Bozovic- Jelisavcic	pdf
Spain	Spanish Network for Future Linear Colliders	A. Ruiz	pdf
Switzerland	CERN	K. Elsener	
United Kingdom	The School of Physics and Astronomy, University of Birmingham	N. Watson	pdf
United Kingdom	University of Cambridge	M. Thomson	pdf
United Kingdom	University of Glasgow	A. Robson	pdf
United Kingdom	The Department of Physics of the University of Liverpool	J. Vossebeld	pdf
United Kingdom	University of Oxford	Ph. Burrows	pdf
USA	Argonne National Laboratory, High Energy Physics Division	H. Weerts	pdf
USA	University of Michigan, Physics Department	J. Wells	pdf

Representative

Who are we?

CLIC detector and physics study (CLICdp)

Light-weight collaboration structure

http://lcd.web.cern.ch/LCD/Home/MoC.html

CLICdp: 22 institutes

n, CLIC at FCC-ee, 14/2/2014

CLIC physics aims => detector needs

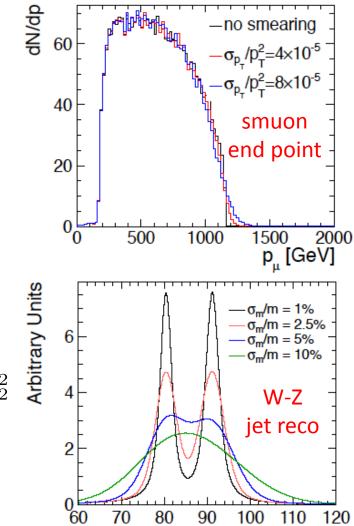
 m_1^2

***** momentum resolution:

e.g. Smuon endpoint
Higgs recoil mass, Higgs coupling to muons

$$\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \, {\rm GeV}^{-1}$$

★ jet energy resolution:


e.g. W/Z/h di-jet mass separation

$$\frac{\sigma_E}{E} \sim 3.5 - 5\,\%$$
 (for

★ impact parameter resolution:

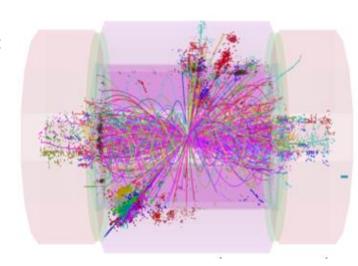
e.g. c/b-tagging, Higgs BR

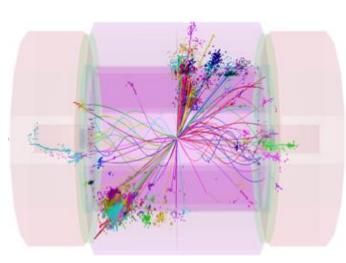
$$\sigma_{r\phi} = 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu \text{m}$$

- ★ angular coverage, very forward electron tagging
 - + requirements from CLIC beam structure and beam-induced background

Mass [GeV]

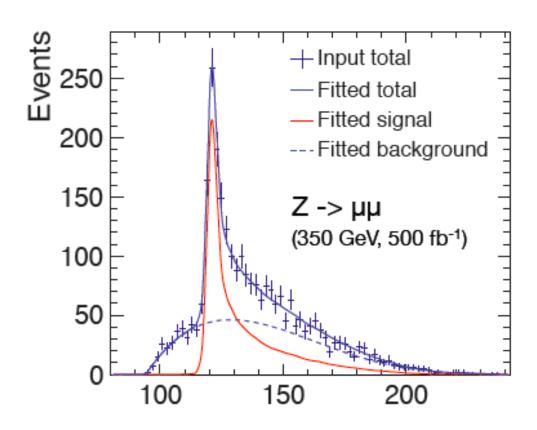
CLIC conditions => impact on detector




Beyond requirements for precision, the CLIC beam conditions impact on detector requirements:

- High tracker occupancies => need small cell sizes (beyond what is needed for resolution)
 - small vertex pixels
 - large pixels in intermediate regions
 - limited strip length in tracker

- for background suppression in data
- Bkg suppression => overall need for precise hit timing
 - ~10 ns hit time-stamping in tracking
 - 1 ns accuracy for calorimeter hits
- 🔹 Low duty cycle 😃
 - Triggerless readout
 - Allows for power pulsing
 - => less mass and high precision in tracking
 - => high density for calorimetry



$$e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$$

Illustration precision requirements

Momentum resolution helps to get:

- Excellent Higgs mass resolution
- Signal/(physics background)

W/Z separation in jj reconstruction (1)

Simulated WW => vvqq and ZZ => vlqq events

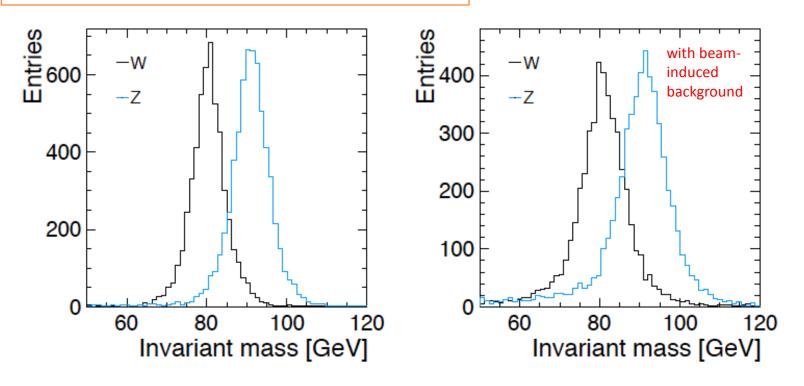


Figure 9: Mass distributions of reconstructed W and Z at an energy of 500 GeV, without background (left) and with 60 BX of background (right). Without background the separation is 2.2σ . With 60 BX of background the separation drops to 1.8σ . Tight PFO selection cuts are used for events with background.

Background suppressed through jet clustering and timing cuts of PFA particles

See: arXiv:1209.4039

W/Z separation in jj reconstruction (2)

Simulated events:

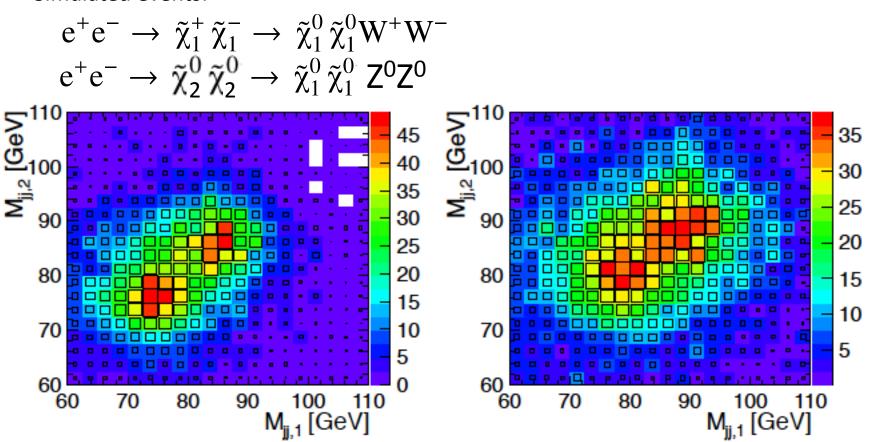


Figure 19: Separation of W and Z from the chargino decay without overlay (left) and with 60 BX of background (right) for CLIC_SiD.

See: LCD-Note-2012-028

Challenges in LC detector R&D

Combined requirements lead to the following challenges:

Vertex and tracker

Very high granularity

Dense integration of functionalities

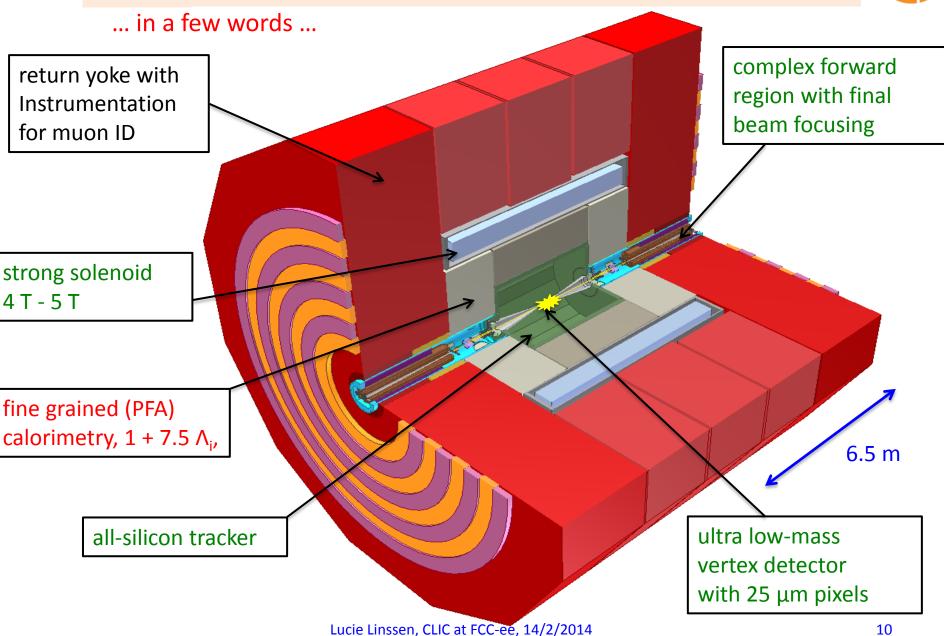
Including ~10 ns time-stamping

Super-light materials

Low-power design + power pulsing

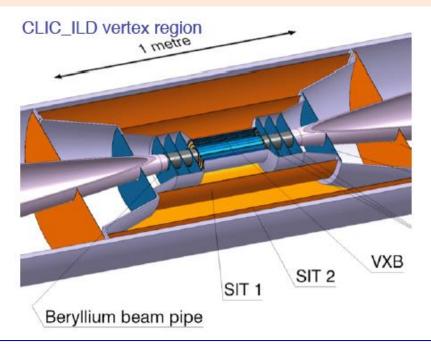
Air cooling

ultra – light


Calorimetry

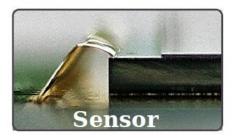
Fine segmentation in R, phi, Z
Time resolution ~1 ns
Ultra – compact active layers
Pushing integration to limits
Power pulsing

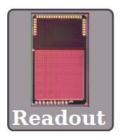
ultra – heavy and compact

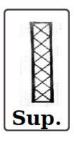

CLIC detector concept

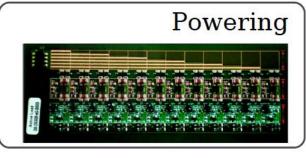
CLIC vertex detector

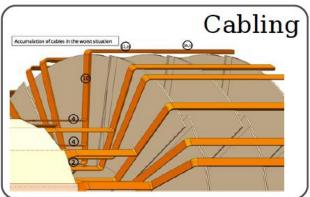
- \sim 25×25 µm pixel size => \sim 2 Giga-pixels
- 0.2% X₀ material per layer <= very thin!
 - Very thin materials/sensors
 - Low-power design, power pulsing, air cooling
 - Aim: 50 mW/cm²
- Time stamping 10 ns
- Radiation level $<10^{11}$ n_{eq}cm⁻²year⁻¹ $<=10^4$ lower than LHC

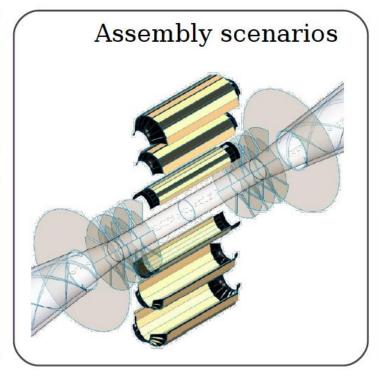

Challenges of CLIC vertex R&D => trend-setter for future detectors at other facilities

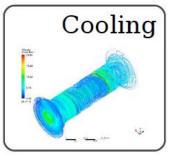

CLIC vertex detector R&D

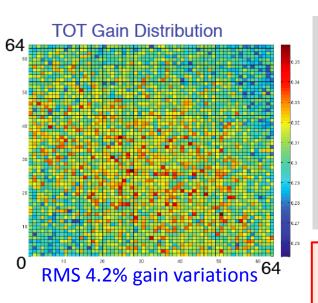

Aspects of Vertex R&D ongoing for CLIC => covering broad spectrum of technology areas







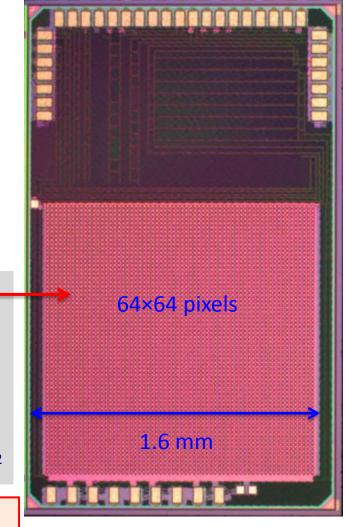




CLIC vertex detector R&D (1)

Hybrid approach pursued: (<= other options possible)

- Thin (~50 μm) silicon sensors
- Thinned high-density ASIC
 - R&D within Medipix/Timepix effort
- Low-mass interconnect
 - Micro-bump-bonding (Cu-pillar option)
 - Through-Silicon-Vias (R&D with CEA-Leti)
- Power pulsing
- Air cooling

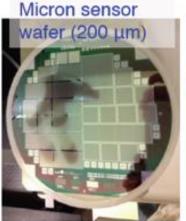


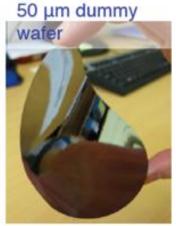
CLICpix demonstrator

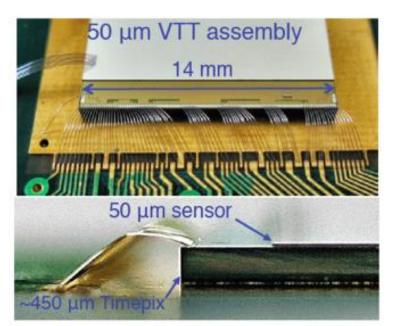
64×64 pixels, fully functional

- 65 nm technology
- $25 \times 25 \, \mu m^2$ pixels
- 4-bit ToA and ToT info
- Data compression
- Pulsed power: 50 mW/cm²

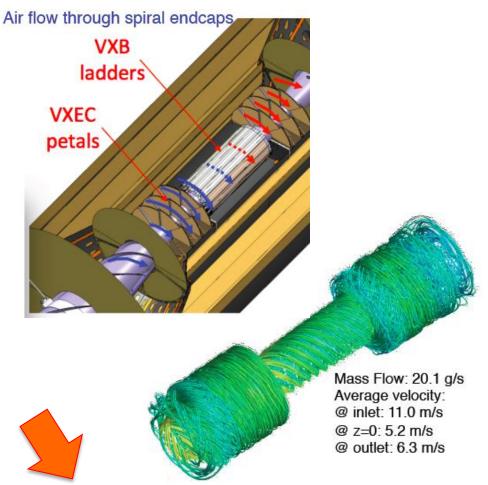
65 nm ASIC development ATLAS, CMS, CLICdp => **RD53**




CLIC vertex detector R&D (2)

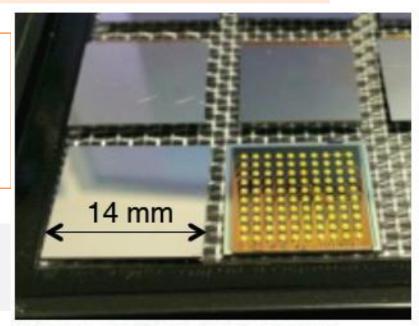


further ongoing R&D activities


thin sensors, down to 50 µm

power pulsing, air cooling, light supports

watching other R&D, e.g. micro-channel cooling (NA62, LHCb-VeLo)

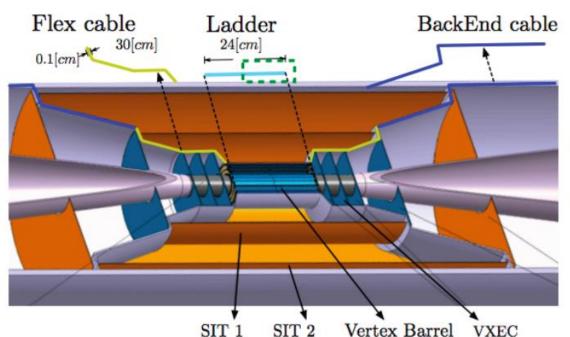

Through Silicon Vias (TSV)

Through Silicon Via (TSV)

Vertical electrical connection passing through Si wafer

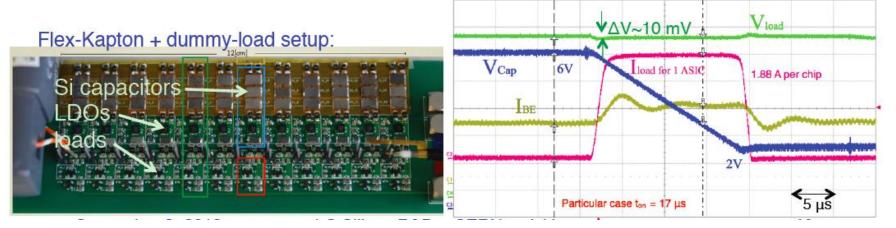
- eliminates need for wirebonds
- 4-side buttable chip/sensor assemblies
- large active surfaces => less material
 - 240 μm TSV diameter
 - wafers thinned to 120 μm
 - 5 μm copper layer for TSV

Medipix TSV project (ALICE / CLIC / ACEOLE / AIDA) with CEA-Leti


- 130 nm IBM Medipix(RX) wafers, via-last process
- successful completion of first phase: demonstrate feasibility
- on-going second phase: demonstrate good yield
- Next phase: with Timepix3 and thin sensors

First Medipix3 Image taken with TSV assembly

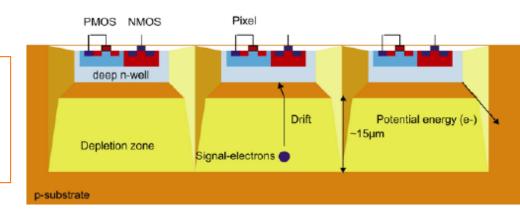
CLIC vertex R&D: power pulsing



Even without power-pulsing, reducing mass for powering components is important

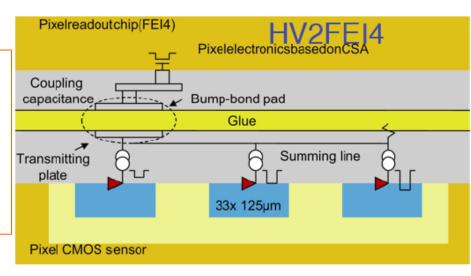
Power-delivery + pulsing

- low-mass Al-Kapton cables
- power pulsing with local energy storage and voltage regulation
- prototype for analog powering of CLICpix ladder:
 - I_{ladder}~20-60 mA; 10 mW/cm²
 - voltage stability: ∆V~10 mV
 - 0.064% X₀ material contrib.
 - can be reduced to ~0.03% X₀



Hybrid detector with HV-CMOS

HV-CMOS MAPS:


- 180 nm High Voltage process
- V_{bias} ~100 V, 10-20 µm depletion layer
- Integrated sensors, fast signal collection

Hybrid option:

Capacitive Coupled Pixel Detector (CCPD)

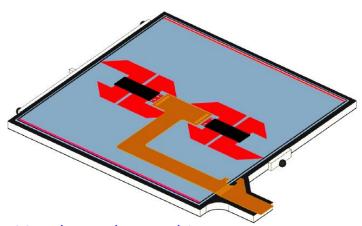
- HV CMOs chip as integrated sensor+ amplifier
- Capacitive coupling to readout chip through layer of glue => no bump bonding
- Ongoing R&D with FEI4, Timepix, CLICpix

(HV-)CMOS is becoming increasingly relevant for vertex/tracking purposes

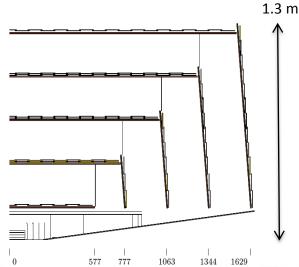
Holds promise for accurate + fast + thin devices

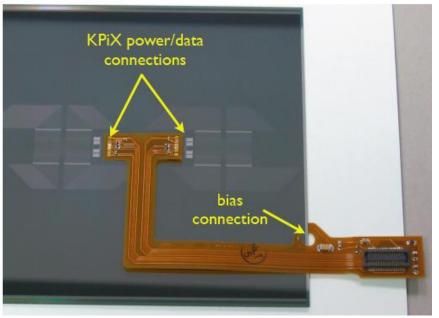
+ promise for cost-effectiveness on a large scale

Linear collider, Si-tracker R&D



Silicon tracker for the Linear Collider


Better precision requires less mass


 \Rightarrow Aim for ~1% X₀ per layer

SiD tracker module "chip on sensor"

- 1024-channel KPIX chip
- Sensor with double metal-layer routing
- Connectivity via Kapton pig-tail cable

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

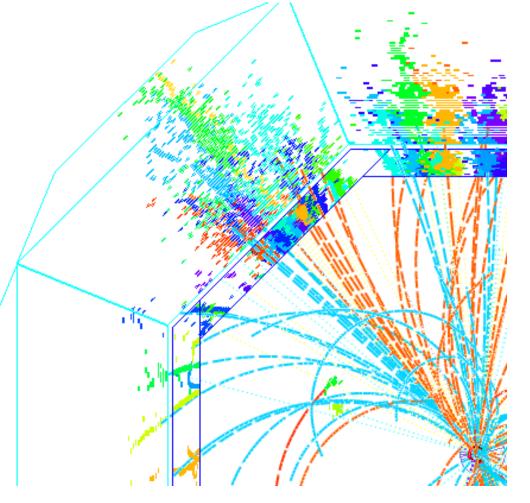
What is PFA?

Typical jet composition: 60% charged particles 30% photons

10% neutrons

60% => tracker (!)

<u>.</u>


30% => ECAL

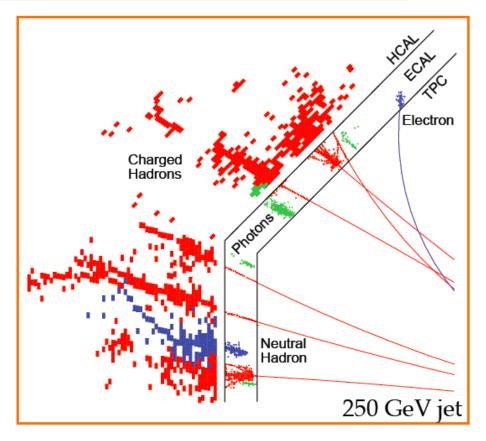
~

10% => HCAL

...

Hardware + software !

PFA calorimetry at CLIC



ECAL

Si or Scint. (active) + Tungsten (absorber) cell sizes 13 mm² or 25 mm² 30 layers in depth

HCAL

Several technology options: scint. + gas Tungsten (barrel), steel (endcap) cell sizes 9 cm² (analog) or 1 cm² (digital) 60-75 layers in depth (HCAL depth \sim 7 Λ_i)

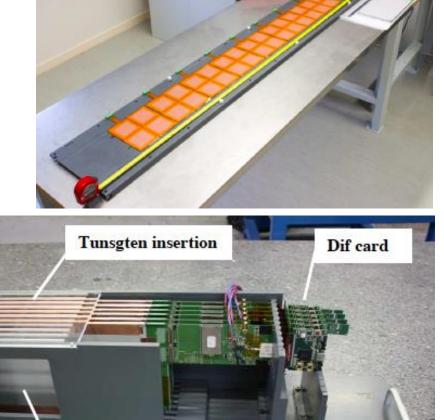
PFA = Software + hardware

PandoraPFA software

Many fine-grained calorimetry technologies

CALICE R&D collaboration

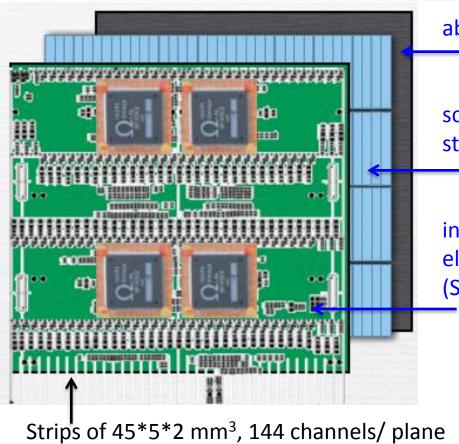

ECAL: Si-W (CALICE)



30 layers in depth cell size 5.5x5.5mm² ~100 M ECAL channels at ILC (ILD) ~2000 m² silicon Successful beam tests

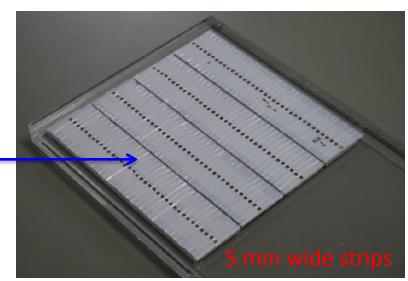
Currently: technological Si-ECAL prototype

Real-scale detector integration model



Wafer center

ECAL: Scint-ECAL (CALICE)

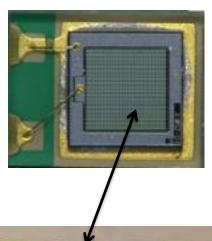


absorber

scintillator strips x,y

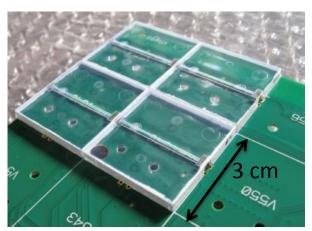
integrated electronics (SKIROC)

Fully integrated modules,

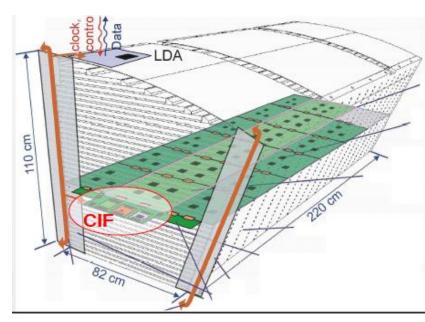

successful beam tests at DESY

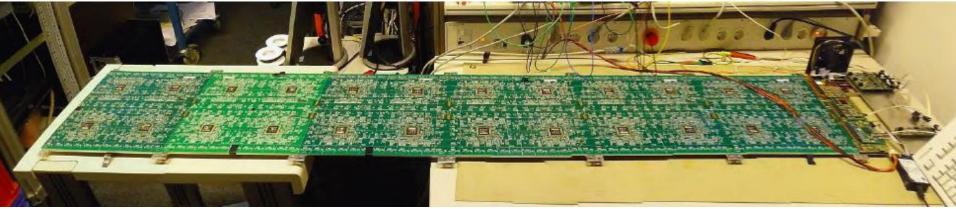
1 cm

Row of MPPC (SiPM) |

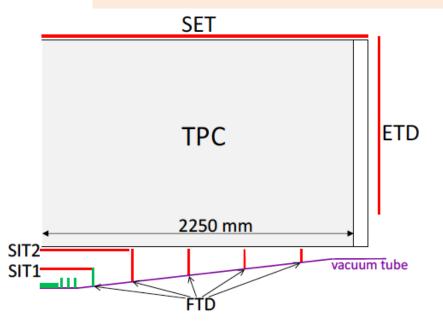

MPPC 1600 pixels 1×1 mm²

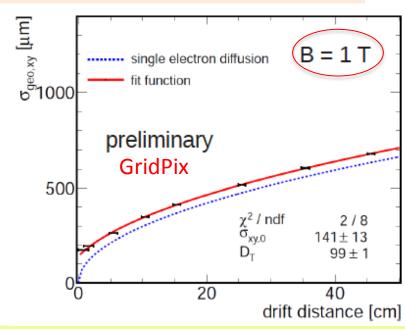
currently exploring SiPM with more pixels


A-HCAL (CALICE)



AHCAL 2nd generation fully integrated prototype undergoing beam tests


3x3 cm² scintillator tiles with SiPMs
Integrated electronics (SPIROC chip)
LED SiPM calibration
Power-pulsing
220 cm long modules
Active layer thickness of 5.4 mm

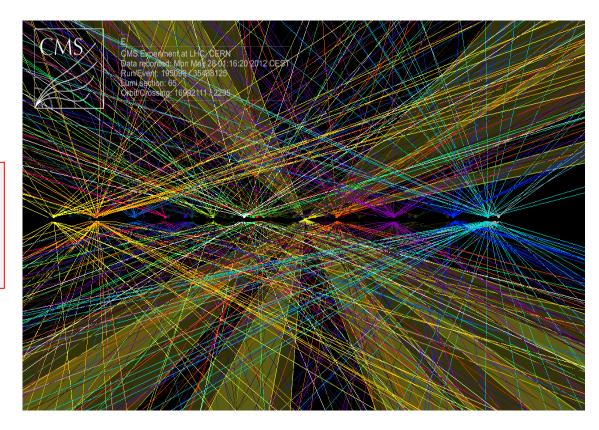


Do you want a TPC for FCC-ee? (1)

- Momentum resolution (B=4T):
 - TPC only : $δ(1/p_T) \sim 8. \ 10^{-5} \ / GeV$
 - SET+TPC+SIT+VTX: $\delta(1/p_T) \sim 2. \ 10^{-5} \ / \text{GeV}$

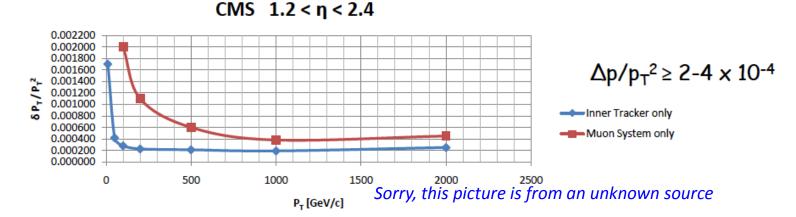
✓ TPC resolution dominated by diffusion
While resolution of Si detectors will profit from from technology advances.

- #pads/#time buckets: ~2.10⁶ / 1000 per endcap
- Pad size/#pad rows: ~1 mm x 4-6 mm / ~200 (standard readout) PAD
- Point resolution: in r ϕ : < 100 μ m; in rz: ~ 0.5 mm
- 2-hit resolution: in rφ: ~ 2 mm; in rz: ~ 6 mm
- dE/dx resolution: ~ 5% (based on LEP TPC experience)


Do you want a TPC for FCC-ee? (2)

Issues at stake:

- Momentum resolution
- Pattern recognition
- Particle ID


Given the tracking experience at LHC, Do we need the TPC for pattern recognition?

Muon system

Like for CLIC => muon momentum is measured precisely in the tracker

- Better muon momentum precision expected wrt LHC case
- => Instrumented yoke is for muon ID only

Software tools

Linear Collider community => common software suite

Flexible geometry description

DD4hep

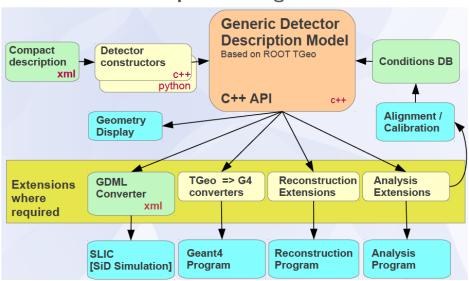
Full simulation in Geant4

Overlay of beam-induced background

Tracking

- TPC tracking
- Silicon tracking

Particle-flow analysis


PandoraPFA

Flavour tagging

LCFI+

+ **Grid production** tool "ILCDIRAC" (derived from LHCb grid tool)

DD4hep - The Big Picture

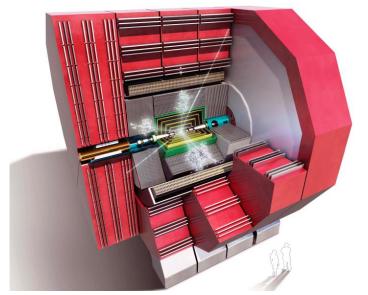
DD4hep, developed under AIDA

Modular detector description: Geometry, materials, visualization, readout, alignment, etc.

Software suite developed and maintained by ILC+CLIC (DD4hep will also be used by FCC-he)

Can probably be shared with other activities (in full or per module)

Summary/outlook



Since LEP-times, lots of advances in detector technologies

Challenging detector R&D ongoing for CLIC and for other facilities

FCC-ee => join (!) and profit from these developments

Be ambitious, there is still some time!

thank you

SPARE SLIDES

Vertex/tracker technologies

Overall challenges:

More accuracy:

- Small cell sizes
- Low-mass
 - => Low power
 - => Interconnects: high-density + vertical

Integrated designs, including:

- Low-mass supports
- Cooling
- Power delivery
- Signal transmission

Manufacturability in large areas at low cost

Move away from most expensive elements (e.g. silicon sensors, bump-bonding)

These general challenges are largely common to CLIC, ILC, HL-LHC, FCC

Calorimeter technologies

Overall challenges:

More accuracy:

- Shower reconstruction of particles within the jet
- Need hit-time accuracy
 - => ~1 ns for CLIC
 - => ~25 ns for LHC
 - => <25 ns for FCC?

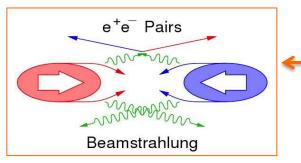
Integrated designs, involving:

- High density => little space for active layers
 - => ~2 mm in linear collider FCAL
 - => <7 mm in linear collider HCAL
- High channel count
- Low-power design
- Minimal space for cooling

Manufacturability in large areas at low cost

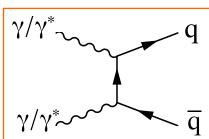
These general challenges are largely common to CLIC, ILC, HL-LHC, FCC

CLIC machine environment


	CLIC at 3 TeV	
L (cm ⁻² s ⁻¹)	5.9×10 ³⁴	
BX separation	0.5 ns	K
#BX / train	312	
Train duration (ns)	156	
Rep. rate	50 Hz	
σ_x / σ_y (nm)	≈ 45 / 1	Ver
σ_{z} (μ m)	44	VEI

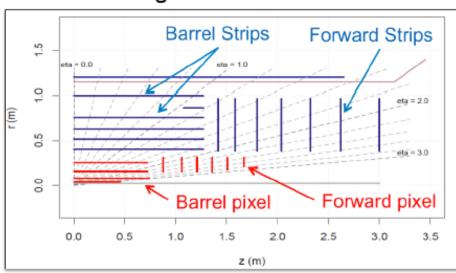
very small beam size

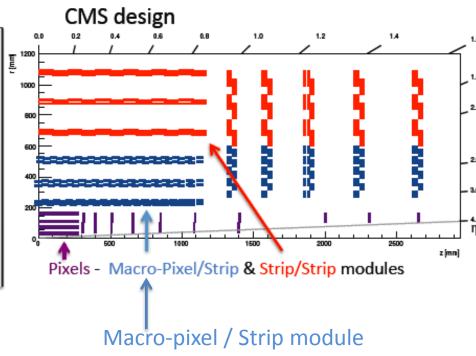
Beam related background:

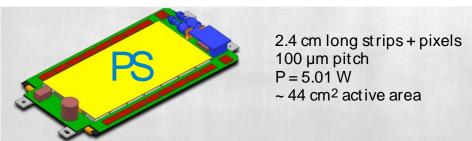

Small beam profile at IP leads very high E-field

Beamstrahlung

- Pair-background
 - High occupancies
- γγ to hadrons
 - Energy deposits


(~19 TeV in calorimeter)


HL-LHC tracker upgrades

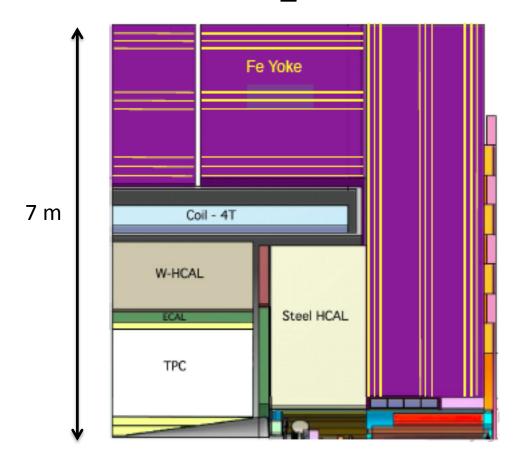


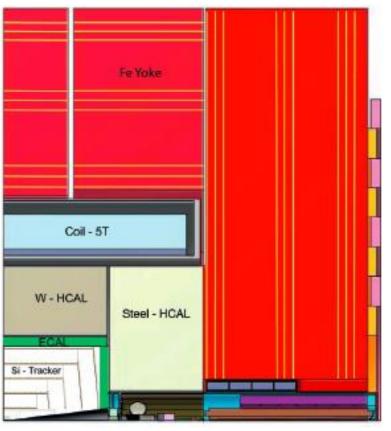
ATLAS design

Upgrades	Area	Baseline sensor type
ALICE ITS	12 m ²	CMOS
LHCb VELO	0.15 m ²	tbd
LHCb UT	5 m ²	n-in-p
ATLAS Strips	193 m ²	n-in-p
CMS Strips	218 m ²	n-in-p
ATLAS Pixels	8.2 m ²	tbd
CMS Pixels	4.6 m ²	tbd

"large tracker pixels" also needed for CLIC With smaller granularity and less mass

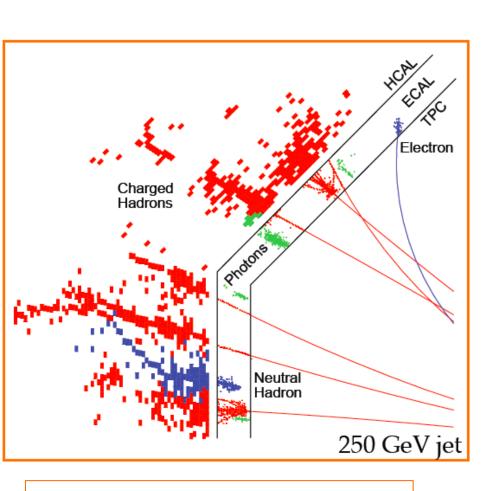
CLIC_ILD and CLIC_SiD

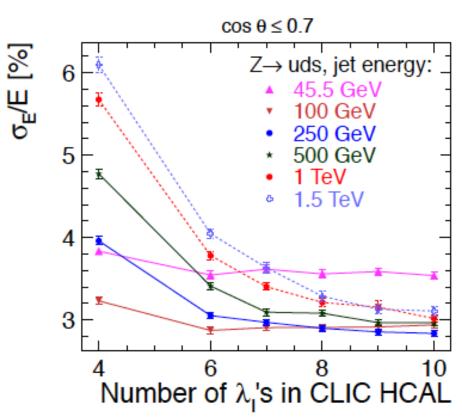



Two general-purpose CLIC detector concepts

Based on initial ILC concepts (ILD and SiD)
Optimised and adapted to CLIC conditions

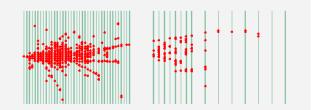
CLIC_ILD


CLIC_SiD



calorimetry and PFA

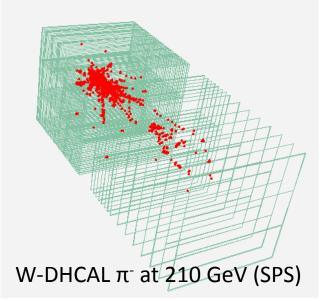
Simulated image (gives good feeling of the granularity)


FPA-based simulation (to determine depth of tungsten HCAL)

digital DHCAL glass RPC's (CALICE)

Steel DHCAL Tungsten DHCAL 500'000 readout channels

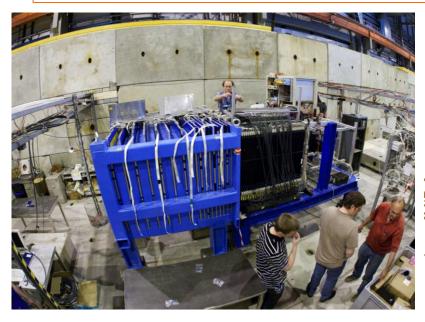
54 glass RPC chambers, ~1m² each PAD size 1×1 cm² Digital readout (1 threshold) Fully integrated electronics Total 500'000 readout channels


Ongoing R&D with lower-resistivity glass

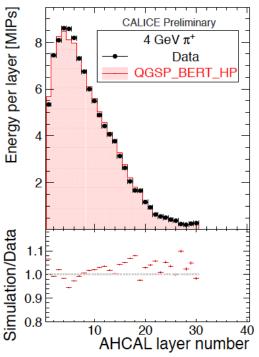
for better rate dependence

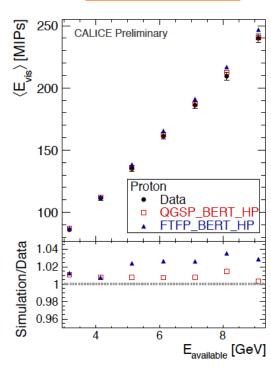
Other large-scale protoypes:

- 1m³ semi-digital HCAL with glass RPC's
- 4 large (~1m²) micromegas readout planes



CALICO Analog HCAL: scintillator/tungsten

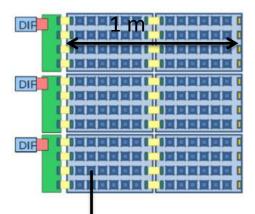

HCAL tests with 10 mm thick **Tungsten absorber** plates, Tests in 2010+2011 with scintillator active layers, 3×3 cm² cells => analog readout


CERN SPS 2011

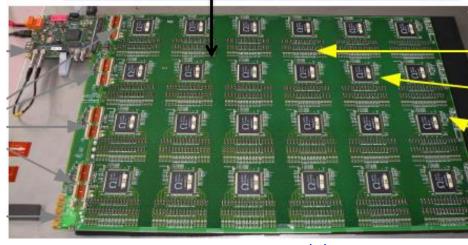
good agreement with Geant4

longitudinal shower profile, pions

visible Energy protons



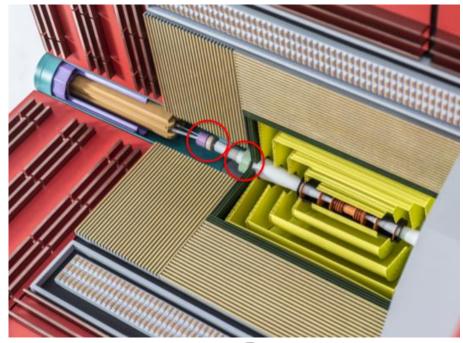
Calorimetry: Micromegas



Micromegas

Two 1 m² chambers, multi-threshold readout **Successfully tested** within SDHCAL stack, 2012

32x48 pads of 1 cm² on back side



CLIC forward calorimetry

2 forward calorimeters: Lumical + Beamcal

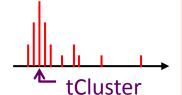
Tungsten thickness 1 X₀, 40 layers
BeamCal sensors GaAs, 500 mm thick
LumiCal sensors silicon, 320 mm thick
Readout at the outer radius
BeamCal angular coverage 10 - 40 mrad
LumiCal coverage 38 – 110 mrad
doses up to 1 Mgy
neutron fluxes of up to 10¹⁴ per year

Very compact!

Active layer gap is 0.8 mm Moliere radius 11 mm

high-radiation performance

=> collaboration with LHC beam monitors


background suppression at CLIC

Triggerless readout of full train

- Full event reconstruction + PFA analysis with background overlaid
 - => physics objects with precise p_T and cluster time information
 - Time corrected for shower development and TOF

- Then apply cluster-based timing cuts
 - Cuts depend on particle-type, p_{τ} and detector region
 - Allows to protect high- p_T physics objects

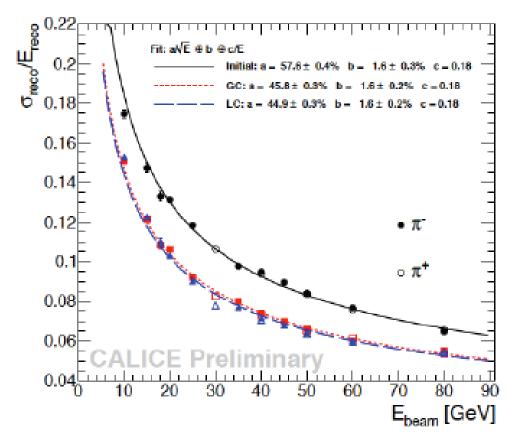
- Use well-adapted jet clustering algorithms
 - Making use of LHC experience (FastJet)

time window / time resolution

The event reconstruction software uses:			
Subdetector	Reconstruction window	hit resolution	
ECAL	10 ns	1 ns	
HCAL Endcaps	10 ns	1 ns	
HCAL Barrel	100 ns	1 ns	
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns	
TPC	entire bunch train	n/a	
t ₀ physics event (offline)			

Translates in precise **timing requirements** of the sub-detectors

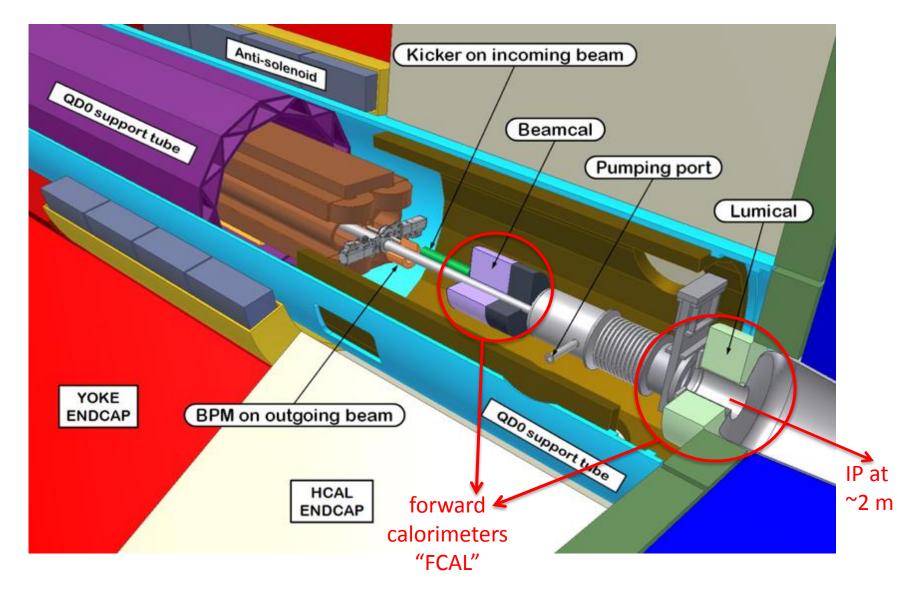
PFO-based timing cuts



Region	p _t range	Time cut	
Photons			
central	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec	
$(\cos \theta \leq 0.975)$	$0~{ m GeV} \leq p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
forward	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	t < 2.0 nsec	
$(\cos\theta>0.975)$	$0~{ m GeV} \leq p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Neutral hadrons			
central	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.5 nsec	
$(\cos \theta \leq 0.975)$	$0~{ m GeV} \leq p_t < 0.75~{ m GeV}$	t < 1.5 nsec	
forward	$0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$	t < 2.0 nsec	
$(\cos\theta>0.975)$	$0~{ m GeV} \leq p_t < 0.75~{ m GeV}$	t < 1.0 nsec	
Charged PFOs			
all	$0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$	<i>t</i> < 3.0 nsec	
	$0~{ m GeV} \leq p_t < 0.75~{ m GeV}$	t < 1.5 nsec	

Software compensation

High granularity of the calorimeter can be used to distinguish between electromagnetic (dense) and hadronic (less dense) shower components



CALICE
Steel-AHCAL data

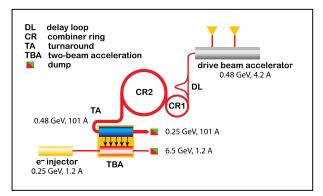
→ Improved resolution (20% better) and linearity

details of forward detector region

CLIC strategy and objectives

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

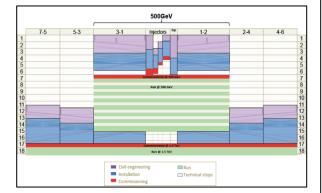

2018-19 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.


2024-25 Construction Start

Ready for full construction and main tunnel excavation.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

Commissioning

Becoming ready for datataking as the LHC programme reaches completion.

Sources

References:

CLIC CDR (vol 2), Physics and Detectors at CLIC, CERN-2012-003, arXiv:1202.5940

CLIC CDR (vol 3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, CERN-2012-005, http://arxiv.org/abs/1209.2543

Possible common pp/e⁺e⁻ development areas

Non-exhaustive, to be completed

Vertex+tracking detector technology

- R&D in integrated hybrid detectors (including developments with HV-CMOS)
- Advanced radiation-hard microelectronics
- Interconnect technologies
- Low-mass engineering
- Low-mass detector cooling (e.g. microcooling options)
- Detector powering
- New low-mass solutions with small strips / large pixels

Fine-grained calorimetry

- Optimisation of jet energy resolution + bkg suppression with PFA
- Compact, large area detectors
- Overall detector engineering aspects and large+strong detector magnets

Simulation tools and methods

- Flexible detector geometry descriptions for simulations in detector optimisation phase
- PFA-like event reconstruction tools
- Jet clustering

detector requirements HL-LHC

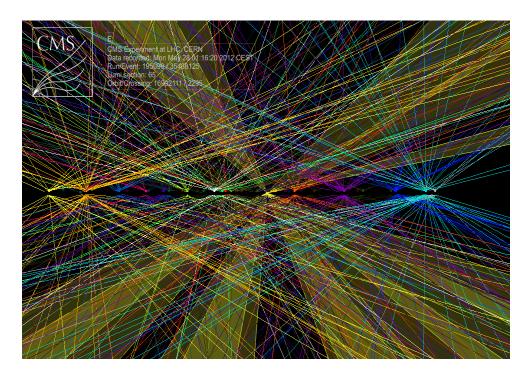
Maintain performance at full sensitivity for discovery and precision measurements at low p_{τ} , under severe pile-up conditions

Pileup

<PU> ≈ 50 events per crossing by LS2

<PU $> \approx 60$ by LS3

<PU> up to 140 for lumi-leveling at 5x10³⁴cm⁻²s⁻¹ at HL-LHC (accounting for uncertainty and bunch-to-bunch variations)


Radiation damage

Performance longevity after 300 fb⁻¹ Replace elements with limited lifetime

Extend performance to larger η

Profit from detector technology advances

Enhance trigger + DAQ

