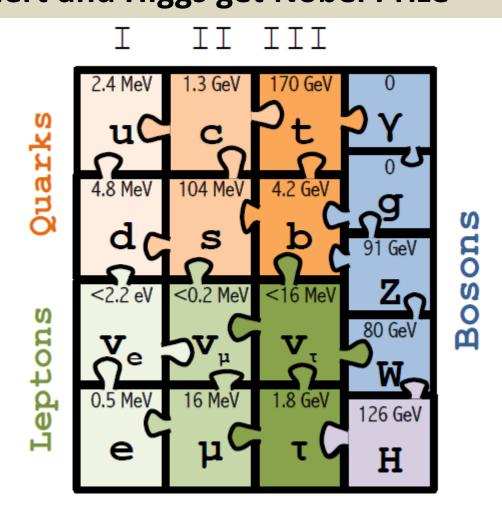
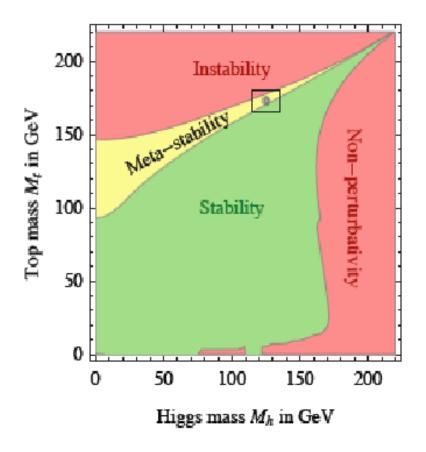


Experiments and detectors - Summary


1994-1999: top mass predicted (LEP, mostly Z mass&width) top quark discovered (Tevatron) t'Hooft and Veltman get Nobel Prize

(c) Sfyrla

Higgs boson mass cornered (LEP H, M_z etc +Tevatron m_t, M_w) Higgs Boson discovered (LHC) Englert and Higgs get Nobel Prize

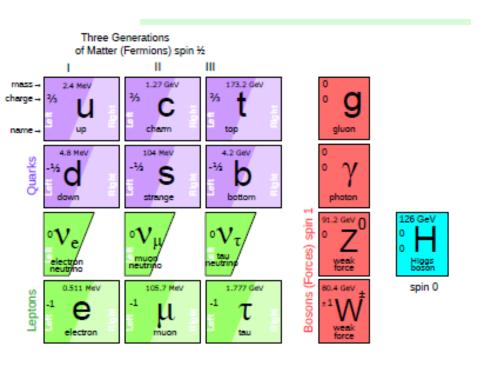


(c) Sfyrla

Is it the end?

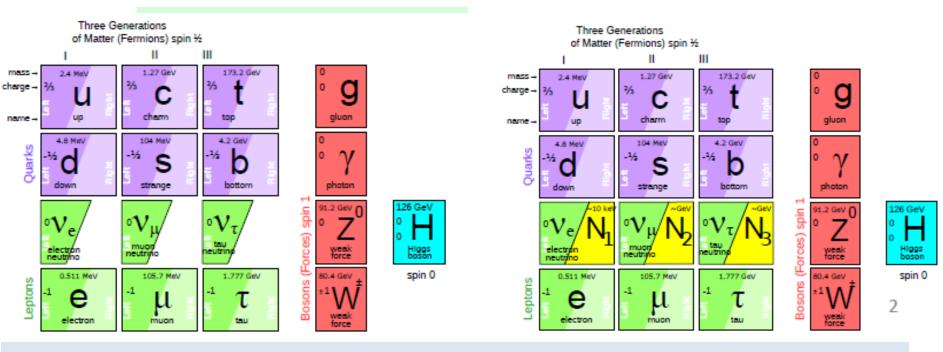
Is it the end?

Certainly not!


- -- Dark matter
- -- Baryon Asymmetry in Universe
- -- Neutrino masses

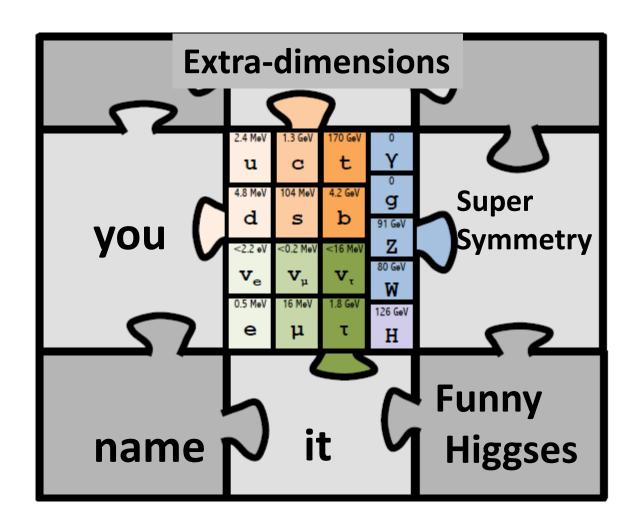
are experimental proofs that there is more to understand.

We must continue our quest


at least 3 pieces are still missing

Since 1998 it is established that neutrinos have mass and this very probably implies new degrees of freedom

at least 3 pieces are still missing

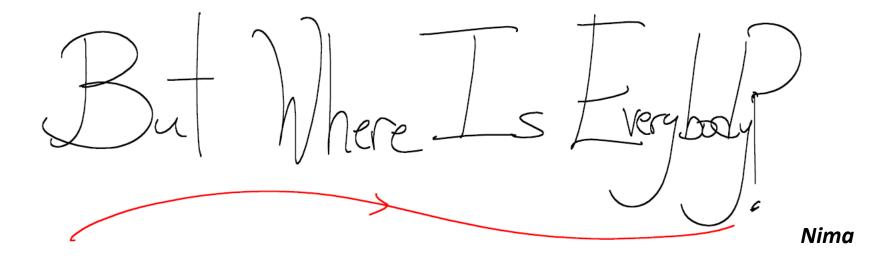


Since 1998 it is established that neutrinos have mass and this very probably implies new degrees of freedom

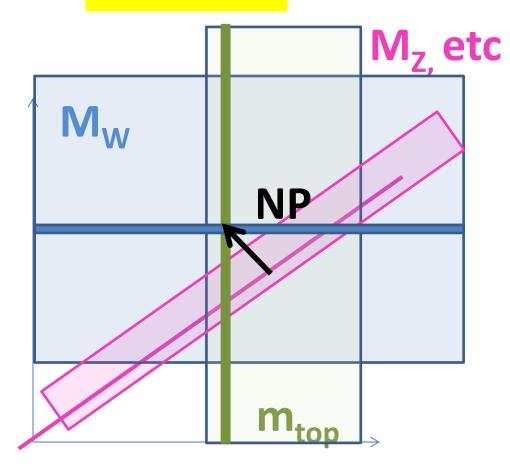
→ «sterile», very small coupling to known particles completely unknown masses (eV to ZeV), nearly impossile to find. but could perhaps explain all: DM, BAU, v-masses

FI

or perhaps new world(s) of SM replicas



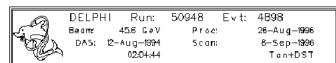
But Mere Is Trendony
Nima



At higher masses -- or at smaller couplings?

Potential discoveries at FCC-ee set the experimental challenges

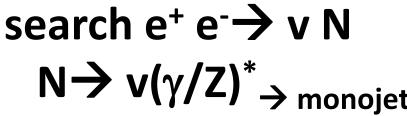
Precision



Rare processes

invisible or exotic Higgs decay Invisible or exotic Z decays Anomalies in W or top decays etc...

- -- high statistics
- -- redundancy
- -- full acceptance
- -- theory precision
- -- Accelerator (E_{beam})



HPC

TPC

Search for heavy neutral leptons

Find: one event in 4x10⁶Z:

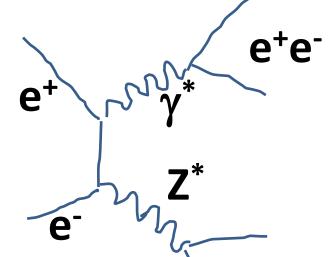
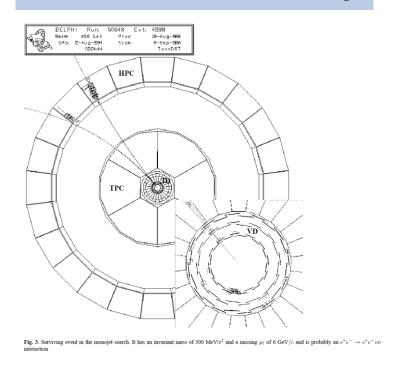


Fig. 3. Surviving event in the monojet search. It has an invariant mass of 300 MeV/c² and a missing p_t of 6 GeV/c and is probably an $e^+e^- \to e^+e^-\nu\bar{\nu}$ interaction



Culture shocks

ELHC discovery

FCC-ee discovery

20-100 events per bunch Xing

1 event per 1000-10000 bunch Xings

so, you don't need a trigger?

YES WE DO → if you want to see one such event in 10⁸⁻¹² Z's you better have two or three redundant triggers for it as this could be due to accidentally missing parts of the detector at 10^{-9 to 12} level!

<u>Lepton collider physics, experiments, detectors</u> - Second floor - M2 193 (14:00-18:20)

- Conveners: Janot, Patrick; Blondel, Alain

time	title	presenter
14:00	Introduction	JANOT, Patrick
14:20	Plans for Working Groups 1 & 2: EW physics at the Z pole, and di-boson physics	TENCHINI, Roberto BLONDEL, Alain
14:40	Plans for Working Group 4: Top quark physics	AZZI, Patrizia
15:00	Plans for Working Group 5: QCD and gamma gamma physics	D'ENTERRIA, David SKANDS, Peter
15:20	Plans for Working Group 6: Flavour Physics	MONTEIL, Stephane
15:45	Coffee break	
16:15	Plans for Working Group 8: Experimental Environment	BACCHETTA, Nicola
16:35	Plans for Working Group 10: Online software and computing	LEONIDOPOULOS, Christos
16:55	Plans for Working Group 11: Detector Designs	ROLANDI, Gigi
17:15	Possible synergies with CLIC detectors	LINSSEN, Lucie
17:40	A TPC for ee-FCC (TLEP) ? A follow-up.	SCHWEMLING, Philippe
18:05	MC codes for FCC-ee	JADACH, Staszek

Experimental Physics WBS (coordinators A. Blondel, P. Janot)

Study the properties of the Higgs and other particles with unprecedented precision

Electroweak Physics at the Z pole R. Tenchini

Di-boson Physics m_W measurement R. Tenchini H(126) Properties

TBA

Top Quark Physics

P. Azzi

QCD and yy Physics

D. d'Enterria

Flavour Physics

S. Monteil

Exp'tal signatures of New Physics

TBA

Develop the necessary tools

Offline Software and Computing TBA

Synergy with FCC-hh

Online Software and Computing
C. Leonidopoulos

Understand the experimental conditions

Exp'tal Environment

N. Baccheta

Synergy with FCC-hh

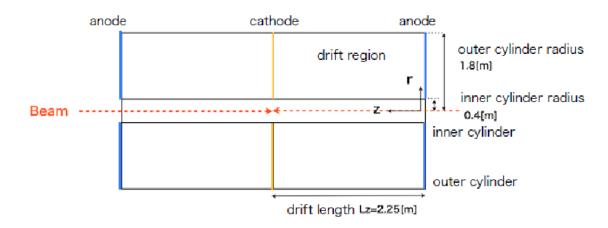
Set constraints on the possible detector designs to match statistical precision

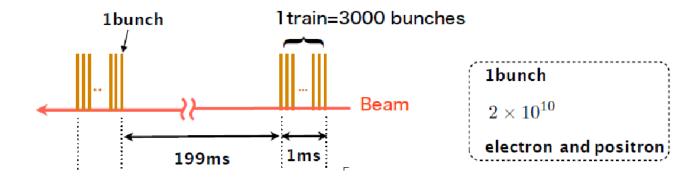
Detector Designs

G. Rolandi

Synergy with linear collider detectors

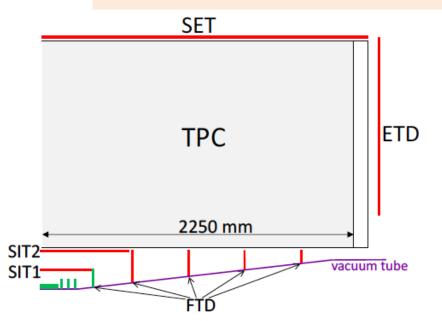
conveners jobs is to assemble collaborators and find co-conveners in a global way

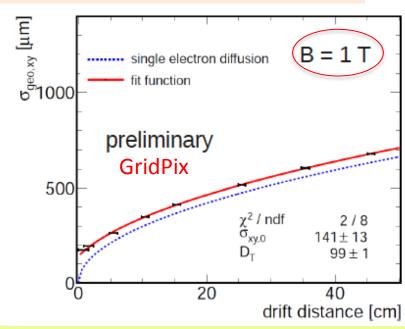



A few highlights

ILC beam structure

ILD TPC can be used for TLEP


main differences: time structure continuous


EM bkg from beamsstrahlung benign

Do you want a TPC for FCC-ee? (1)

- Momentum resolution (B=4T):
 - TPC only : $\delta(1/p_T) \sim 8. \ 10^{-5} \ / \text{GeV}$
 - SET+TPC+SIT+VTX: $\delta(1/p_T) \sim 2. \ 10^{-5} \ / \text{GeV}$

✓ TPC resolution dominated by diffusion

While resolution of Si detectors will profit from from technology advances.

- #pads/#time buckets: $\sim 2.10^6 / 1000$ per endcap
- Pad size/#pad rows: ~1 mm x 4-6 mm / ~200 (standard readout) PAD
- Point resolution: in r ϕ : < 100 μ m; in rz: ~ 0.5 mm
- 2-hit resolution: in rφ: ~ 2 mm; in rz: ~ 6 mm
- dE/dx resolution: ~ 5% (based on LEP TPC experience)

LEP MC programs from Krakow group

with the important US component: B.F.L Ward, S.Yost!

Contact persons will tell you where to look for source code which compiles under modern Linux:

- **KKMC** for $e^-e^+ \rightarrow f\bar{f} + n\gamma$, $f = \mu, \tau, \nu, u, d, s, c, b, \quad n = 0, 1, 2...\infty$ contact: S. Jadach, stanislaw.jadach@cern.ch
- TAUOLA for
 \(\tau\) decays and PHOTOS for extra photons emission ∈ KKMC and other programs, including LHC! contact: Z. Was, zbigniew.was@cern.ch
- BHLUMI for small angle e⁻e⁺ → e⁻e⁺
 contact: S. Jadach, stanislaw.jadach@cern.ch
- BHWIDE for large angle e⁻e⁺ → e⁻e⁺
 contact: W. Płaczek, wieslaw.placzek@uj.edu.pl
- KORALW for e⁻e⁺ → 4f, YFSWW e⁻e⁺ → W⁻W⁺ → 4f contact: M. Skrzypek, maciej.skrzypek@ifj.edu.pl
- YFSZZ for e⁻e⁺ → ZZ → 4f
 contact: W. Płaczek, wieslaw.placzek@uj.edu.pl

F

Very brief summary and lessons of session:

- 1. excellent engagement of working group conveners
- 2. need for common software and event generators will make common request to CERN-PH
- 3. need for face-to-face discussions
 - -- will continue (and intensify) monthly VCs
 - -- will seek to organize informal workshops
 - -- MDI essential (beam energy, L*, SR and BS background, etc)
- 4. paradox: the «discovery» working groups (Higgs and new physics) are in want of conveners! Dont be shy.
- 5. connection to linear collider effort started (L. Linssen) very positively. Will act towards ILC detector groups.
- 6. Optimism that precision QED calculations can be improved with new computing power and tools
- 7. Many opportunities to collaborate at world-wide level.

