On CEPC-SppC Accelerator international Collaboration Issues

Jie Gao

On behalf of CEPC+SPPC

Institute of High Energy Physics, Beijing Feb. 14, 2014, Geneva

Current organization for pre-study

Internationalization

- This is a machine for the world and by the world
- As the first step, a "Center for Future High Energy Physics (CFHEP)" is established
 - Prof. Nima Arkani-Hamed is now the director
 - Many theorists(coordinated by Nima and Tao Han) and accelerator physicists(coordinated by Weiren Chou) from all the world have signed to work here from weeks to months.
 - More are welcome → need support from the related management
 - Current work:
 - Workshops, seminars, public lectures, working sessions, ...
 - Pre-CDR
 - Future works
 - CDR & TDR
 - Engineer design and construction
 - A seed for an international lab →
 Organized and managed by the community
- We hope to closely collaborate with FCC@CERN

Site

- Preliminary selected Qinhuangdao (秦皇岛)
- Strong support by the local government

Easy Access

- 300 km from Beijing
- 3 h by car
- 1 h by train

Good geological condition

- Base rock type: granite
- Base rock depth: 0.5 2 m
- Earth quake: no more than 7, 0.10g
- Earth vibration(RMS, nm):

	Zhangjiakou	Huailai	∕ Qinhuangdao ∖	Tianjing	怀柔
1~100hz	~12	~40	~1.9	~470	~60
4~100hz	~7	~14	~0.8	~24	

Building the tunnel in granite will have lowest cost

Current design

CEPC basic parameters:

- Beam energy ~120 GeV.
- Synchrotron radiation power ~50 MW.
- 50/70 km in circumference.

SppC basic parameters:

- Beam energy ~50-70 TeV.
- 50/70 km in circumference.
- \triangleright Needs B_{max} ~20T.

The circumference of CEPC will be determined later based on cost estimate. A total budget cap is preliminarily set to be about 20B RMB.

Accelerator design: CEPC

Main ring:

- A FODO lattice in arcs with 60 degree phase advances
- 16-folder symmetry
- RF sections distribute around the ring
 - f_{rf} = 700MHz is chosen
- Pretzel scheme is adopted for multi-bunch collision
- Double ring option is under-investigation
- ATF2 type and ILC type FFS designs are currently under study

• Booster:

- In the same tunnel of the collider (6 - 120 GeV)

• Linac:

6GeV–Linac will be adopted

Main parameters of CEPC at 50km

Parameter	Unit	Value	Parameter	Unit	Value
Bean Energy	GeV	120	Circumference	km	50
Number of IP		2	L ₀ /IP (10 ³⁴)	cm ⁻² s ⁻¹	2.62
No. of Higgs/year/IP		1E+05	Power(wall)	MW	200
e+ polarization		0	e- polarization		0
Bending radius	km	6.2	N _e /bunch	1E10	35.2
N _b /beam		50	Beam current	mA	16.9
SR loss	(GeV/turn)	2.96	SR power/beam	MW	50
Critical energy of SR	MeV	0.6	ε _x ,n	mm-mrad	1.57E+06
ε _γ , n	mm-mrad	7.75E+03	β_{IP} (x/y)	mm	200/1
Trans. size (x/y)	μm	36.6/0.18	Bunch length	mm	3
Energy spread SR	%	0.13	Full crossing angle	mrad	0
Lifetime due to Bhabha	sec	930	Damping part. No. (x/y/z)		1/1/2
b-b tune shift x/y		0.1/0.1	Syn. Osci. tune		0.13
RF voltage V _{rf}	GV	4.2	Mom. compaction	1E-4	0.4
Long. Damping time	turns	40.5	Ave. No. of photons		0.59
dB beam-beam	%	0.014			

9/45

Main Parameters of SppC

Parameter	SppC-1	SppC-2	
Beam energy (TeV)	25	45	
Circumference (km)	49.78	69.88	
Number of IPs	2	2	
SR loss/turn (keV)	440	4090	
N _p /bunch (10 ¹¹)	1.3	0.98	
Bunch number	3000	6000	
Beam current (mA)	0.5	0.405	
SR power /ring (MW)	0.22	1.66	
B ₀ (T)	12	19.24	
Bending radius (km)	6.9	7.8	
Momentum compaction (10 ⁻⁴)	3.5	2.5	
β_{IP} x/y (m)	0.1/0.1	0.1/0.1	
Norm. trans. emit. x/y (μm·rad)	4	3	
ξ _y /IP	0.004	0.004	
Geo. luminosity reduction factor F	0.8	0.9	
Luminosity /IP (10 ³⁵ cm ⁻² s ⁻¹)	2.15	2.85	

Schedule

CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15 → Pre-CDR by 2014
 - CDR in 2015
 - TDR(R&D): 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035

SPPC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
- Construction: 2035-2042
- Data taking: 2042 -

Action items(partially)

- Pre-CDR by 2014
- Approaching the Chinese government in 2015 for R&D funding (next 5-year planning: 2016-2020)
- Get community support in China: ready for some kind of review
- Get international support
 - Workshops, joint efforts, statement(?), ...
- Develop documents to address scientific, economical and industrial benefit to China and to the world
- Education: public lectures, books, schools, mumti-media, ...
- Media: news release, event coverage, interview, ...
-

Pre-CDR of CEPC+SppC

Table of Contents (Draft, February 10, 2014)

Executive summary

- 1. Introduction
- 2. Sciences of CEPC and SppC
- 3. Machine layout and performance
- 4. CEPC accelerator physics
- 1) Main parameters
- 2) Lattice
- 3) Interaction region and machine-detector interface
- 4) Beam stability
- 5) Beam-beam effects
- 6) Synchrotron radiation
- 7) Injection and beam dump
- Background
- 9) Polarization

Pre-CDR of CEPC+SppC

5. CEPC – technical systems

- 1) Superconducting RF system
- 2) Cryogenic system
- 3) Magnets
- 4) Vacuum
- 5) Power supplies
- 6) Instrumentation
- 7) Control system
- 8) Radiation shielding
- 9) Survey and alignment

6. CEPC – injectors

- 1) e+ and e- sources
- 2) Linac
- 3) Booster ring

Pre-CDR of CEPC+SppC

7. Upgrade to SppC

- 1) Key accelerator physics issues
- i. Main parameters
- ii. Synchrotron radiation
- iii. Beam-beam effects
- iv. Electron cloud effect
- 2) Key technical systems
- i. High field superconducting magnet
- ii. Vacuum and beam screen
- 3) Reconfiguration of the accelerator complex
- 8. Other possible upgrades
 - 1) ep
 - 2) γγ
- 9. Civil construction
- 10. Environment, safety and health considerations
- 11. R&D programs
- 12. Project plan and cost estimate

Timeline

● ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders - Higgs Factory, October 8-11, 2014, Beijing. (pending ICFA's approval on Feb. 21, 2014, DESY)

Pre-CDR review: November 2014

Pre-CDR v1.0: by the end of the year 2014

Collaboration Issues (1)

- FCC is similar to CEPC+SppC.
- However, there are two main differences:
- (1) CERN is focusing on pp, CEPC+SppC is focusing on e+e-
- (2) FCC's CDR is due in 2018, and CEPC+SppC 's CDR is due in 2015
- (3) CERN is running LHC (pp) and IHEP is running BEPCII (e+e-)

Collaboration Issues (2)

The mode of collaboration between FCC and CEPC+SPPC:

- 1) Exchange visitors
- Visitors working on both projects (with comparisons, crosschecks, new ideas, training students, etc., design works in the first phase)
- 3) Joint meetings (with web-meetings), workshops, and schools, etc...
- 4) Help each other by taking into account of differences in time and particle type priorities...
- 5) Key technical parameter be better same such as rf frequency
- Common design of key components, such as SCRF system...

Summary

- FCC and CEPC+SppC are very exciting and important in parallel to ILC
- High energy physics committee is booming with these projects and proposals, especially for young generations
- Circular colliders' beam dynamics and technologies are arrived at a good time to boom together with linear colliders
- Future large collider projects are all of the nature international collaboration and are all belong to our community
- Collaborations between institutions and projects are vital for all projects, especially FCC+CEPC+SppC
- China HEP is open to the world for participation and joint development