

From LHeC to FCC-he Detector

P.Kostka, <u>A.Polini</u> on behalf of the LHeC Study Group

http://cern.ch/lhec

CDR: "A Large Hadron Electron Collider at CERN" LHeC Study Group, [arXiv:1206.2913] J. Phys. G: Nucl. Part. Phys. 39 (2012) 075001 "On the Relation of the LHeC and the LHC" [arXiv:1211.5102]

FCC Study Kickoff Meeting

e[±] Beam Options: RR and LR

Loss compensation 2 (90m)

Ring-Ring

- $e^{\mp}p$ and $e^{\mp}A$ (A=Pb, Au, ...) collisions
- More "conventional" solution, like HERA, no difficulties of principle at first sight - but constrained by existing LHC in tunnel
- polarization 40% with realistic misalignment assumptions
- Linac-Ring (default)
- e⁺p and e⁺A (A=Pb, Au, ...) collisions, polarized e⁻ from source, somewhat less luminosity for e⁺
- New collider type of this scale, Energy Recovery Linac

Loss compensation 1 (140m)

Baseline: Energy Recovery Linac

- Linac-Ring design employs two 1km long Linac's, with energy recovery
 - Novel new accelerator design
 - Default option due to reduced impact on the LHC schedule (compared to RR design)
 - Lower luminosity for e⁺ running (e⁻ a few x10³⁴ cm⁻²s⁻¹ achievable)

Luminosity [10 ³³ cm ⁻² s ⁻¹]	1-10**
Detector acceptance [deg]	1
Polarization [%]	90
IP beam sizes [µm]	7
Crossing angle [mrad]	0
e- L* [m]	30
Proton L* [m]	15
e- beta* _{x,y} [m]	0.12
Proton beta* _{x,y} [m]	0.1
Synchrotron power [kW]	22

** high luminosity achievable according to recent estimates

Q1

The Interaction Region

Q1.1

150 200

100 x [mm]

Q2

- 3 beam interaction region
- Optics compatible with LHC running and β*=0.1m
- Head-on collisions achieved via long dipole
- across interaction region
- \rightarrow Dipole in main detector
- \rightarrow High synchrotron radiation load

FCC Study Kickoff Meeting

°O.

50

р d1

0

-50

60 40 [20 [20 0 ^ -20 -40

-60

Beam Pipe Considerations

A tentative timescale (months)..... Typical Be solution (3-4 yrs) CDR 12? 12? vac studies vac tests eng, layouts, integration composite studies prototypes eng design approva tender manu coating 24? 24? 6 3 12 12-24 3

Low Z materials R&D CEB WG (C. Garion) (M. Galillee)

Additional manpower is necessary to advance on LHeC eng & vacuum physics issues

- Circular-Elliptical beam-pipe design
 - Beryllium 2.5-3.0 mm wall thickness
 - Central beam pipe ~ 6 meters
 - TiZrV NEG coated
 - Wall protected from primary SR (upstream masks)
 - Minimised end flanges, minimised supports
 - optimisation needed R&D

LHeC Kinematics

Elektron Proton Quark

LHeC - electron kinematics

LHeC - jet kinematics

- High x and high Q²: few TeV HFS scattered forward:
- \rightarrow Need forward calorimeter of few TeV energy range down to 1^o
- Mandatory for charged currents where the outgoing electron is missing
- Scattered electron:
 - \rightarrow Need very bwd angle acceptance for accessing the low Q² and high y region

Detector Requirements from Physics

• High resolution tracking system

- excellent primary vertex resolution
- resolution of secondary vertices down to small angles in forward direction for high x heavy flavor physics and searches
- precise p_t measurement matching to calorimeter signals (high granularity), calibrated and aligned to 1 mrad accuracy

The calorimeters

– electron energy to about 10%/ \sqrt{E} calibrated using the kinematic peak and double angle method, to permille level

Tagging of γ 's and backward scattered electrons - precise measurement of luminosity and photo-production physics

- hadronic part 40%/ \sqrt{E} calibrated with p_{t_e}/p_{t_h} to 1% accuracy
- Tagging of forward scattered proton, neutron and deuteron diffractive and deuteron physics
- Muon system, very forward detectors, luminosity measurements

Baseline Detector

- High acceptance Silicon Tracking System ~1°
- Liquid Argon Electromagnetic Calorimeter (or Pb/Scintillator)
- Fe-Scintillator Hadronic Calorimeter (magnet return flux)
- Forward Backward Calorimeters: Si/W Si/Cu ...

0.6

0.5

- Baseline: Solenoid (3.5 T) + dual dipole 0.3 T (Linac-Ring Option)
 Both magnets (may be) embedded into EMC LAr Cryogenic System
 - Large coils (double solenoid): Containing full calorimeter, precise muon measurement, large return flux

-0.5

 Small coil: Cheaper, less iron for return flux, solenoid and dipoles conveniently within the same cold vacuum vessel, but no muon measurement

Z [m]

By

Z [m]

Z [m]

Bz

LHeC Detector Overview

- Forward / backward asymmetry reflecting beam kinematic / energy flow
- Present size: 14m x 9m (c.f. CMS 21m x 15m , ATLAS 45m x 25 m)
- e/γ taggers ZDC, proton spectrometer integral to design from outset system providing tagging, no independent momentum measurement

Forward Energy and Acceptance

RAPGAP-3.2 (H.Jung et.al.- http://www.desy.de/~jung/rapgap.html) HzTooL-4.2 (H.Jung et.al. - http://projects.hepforge.org/hztool/) selection: q².gt.5

→ Highest acceptance desirable

FCC Study Kickoff Meeting

14 February 2014

[GeV]

Fwd/Bwd Calorimeters

Forward/Backward Calorimeters

- Forward FEC + FHC: tungsten high granularity; Si (rad-hard) high energy jet resolution FEC: ~30X0; FHC: ~8-10 λ₁
- Backward BEC + BHC: need precise electron tagging; Si-Pb, Si-Fe/Cu (~25X₀, 6-8 λ₁)
- GEANT4 simulation containment, multi-track resolution (forward) e[∓] tagging/E measurement (backward)

Highest energies in forward region Radiation hard High Granularity Linearity

1 layer FHC

FHC & FEC composite Calorimeter

1 layer FEC

Hadronic Calorimeter

- Baseline design
 - HAC iron absorber (magnet return flux)
 - scintillating plates (similar to ATLAS TILE CAL)
 - Interaction lengths of ~ 7-9 λ_l

Tile Rows	Height of Tiles in Radial Direction	Scintillator Thickness
1-3	$97\mathrm{mm}$	$3\mathrm{mm}$
4-6	$127\mathrm{mm}$	$3\mathrm{mm}$
7-11	147 mm	$3\mathrm{mm}$

GEANT4 + FLUKA simulations

- containment, resolution, combined HAC & EMC response
- solenoid/dipoles/cryostat in between

Muon System Baseline

Baseline Solution:

Muon system providing tagging, no independent momentum measurement

Momentum measurement done in combination with inner tracking

Present technologies in use in LHC exp. sufficient (RPC, TGC, MDT, mMegas etc.)

Future Circular Collider Study Michael Benedikt FCC Kick-Off 2014

Design choice: beam parameters as available from hh and ee

- Max. e[±] beam current at each energy determined by 50 MW SR limit.
- 1 physics interaction point, optimization at each energy •

collider parameters		protons		
species	e [±] (polarized)	e±	e±	р
beam energy [GeV]	80	120	175	50000
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.3	1.2	0.15	
bunch intensity [1011]	0.7	0.46	1.4	1.0
#bunches per beam	4490	1360	98	10600
beam current [mA]	152	30	6.6	500
σ _{x,y} * [micron]	4.5, 2.3			

FCC-he design challenges

Integration aspects, machine detector interface

- Synchrotron radiation
- · Large polar angle acceptance

IR optics & magnets with 3 beams

- Crossing scheme
- Detector integrated dipole, final SC quadrupoles, crab cavities,

Concurrent operation of $e^{\pm}h$ with hh or/and $e^{\pm}e^{-}$ operation?

Relevant expertise available worldwide and potential synergies: ⇔ HERA, eRHIC, MEIC, HIAF-EIC,...

Alternative option for eh collisions in connection with FCC-hh:

Potential reuse of an energy recovery linac (ERL) that is being studied in the frame of the LHeC study.

Ring-Ring: FCC-he e[∓] (max) 175 GeV + p/A 50 TeV

H

FCC-he Two Scenarios

Linac-Ring

Forward calorimeter containment up to few 10thTeV down to 1⁰ \rightarrow

increase the calorimeter depth compared to LHeC (especially in forward region)

Ring-Ring

Kinematic coverage can also be achieved by lowering E_e (goes squared to lower Q^2) and lowering E_p (accesses larger x)

e/A interactions - splash of particles produced - to be measured

- Interaction region:
 - -Assume similar interaction region as for LHeC
 - -dipole field across the whole detector
 - $-e^{\pm}$ syn radiation \rightarrow elliptical beampipe
- Detector:
 - Higher momenta/energies \rightarrow Larger BL², Larger calorimetry
 - -Large acceptance over η
 - -Bunch spacing (25ns \rightarrow 5ns), (pile up less of a problem in ep)
- Beam Pipe Design
 - -low X_0 , λ_1 material, stable, capable for 1^o tracks
 - -allowing low p⊤ particle measurement
 - -R&D needed (new ideas)

HO The FCC-he Detector Scheme - LR

- A very first arrangement based on the LHeC design using LR constraints (dipoles)
- Forward calorimeter containment up to few 10th TeV down to 1°

I The FCC-he Detector Scheme - LR

 Forward/backward taggers not shown but also present (FPS, ZDC, e γ taggers, e polarimeter)

Tracker	FST	CFT	CPT	CST	CBT	BST
#Layers / Wheels	7	2	4	5	2	5
Min. Polar Angle $\theta[^0]$	0.4	2.2	3.2	3.2 32.5		179.5
Max. / Min. $ \eta $	5.7	3.9	3.5	1. 0	-3.9	-5.2
Project Area $[m^2]$	11.0	0.8	1.4	12.8	0.8	7.9
Calorimeter	FHC	FEC	EMC	HAC	BEC	BHC
$\operatorname{Min.}/\operatorname{Max.}\operatorname{Polar}\theta[^0]$	0.4	0.4	6.8 / 171.1	15.1 / 160.7	179.4	179.5
Max. / Min. $ \eta $	5.7	5.6	2.8 / 2.5	2.0 /-1.7	-5.3	-5.5
Volume $[m^3]$	18.9	1.5	41.7	443.4	-5.3	-5.5

FCC Study Kickoff Meeting

The FCC-he Large (double) Solenoid

An arrangement based on the LHeC design with a large solenoid

• Less material in front of HAC calorimetry

Double solenoid system (second solenoid not to scale):

- ample return field region for independent (muon) momentum measurement
- Lightweight structure

The FCC-he enlarges further the LHeC physics program

- DIS *ep* and *eA* in the widest x-Q² range
- Very precise Higgs physics (Can also explore H → HH)

The detector:

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N ^H _{CC}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	$2\ 450\ 000$
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H \rightarrow \tau^+ \tau^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l 2 \nu$ 0.0106	$2\ 080$	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500

- A very preliminary draft has been presented
- An FCC-he detector appears feasible using todays technologies
- The detector design will benefit from coming technology progress
- Full simulation being setup based on DD4hep/DDG4 toolset
- The FCC-he detector provides a high level of synergy withing HEP and the FCC in some of the challenges

Backup

System Extensions LHeC

Extensions LHeC detector:

- Independent momentum measurement
- Large solenoid
- Dual Coil System (homogeneous return field)
- Forward Toroid System

→ See Plenary talk by M. D.Onofrio

Cross-sections for CC backgrounds in fb for E_e=60, 120,150 GeV

Processes	$E_e = 60 \text{ GeV}$		$E_e = 120 \text{ GeV}$		$E_e = 150 \text{ GeV}$	
	$\sigma({\rm fb})$	$\sigma_{eff}(\text{fb})$	$\sigma({\rm fb})$	$\sigma_{eff}(\text{fb})$	$\sigma({\rm fb})$	σ_{eff} (fb)
$e^-p \to \nu_e b \bar{b} b \bar{b} j$	0.086	0.022	0.14	0.036	0.15	0.038
$e^-p \to \nu_e b \bar{b} c \bar{c} j$	0.12	1.7×10^{-5}	0.36	1.8×10^{-3}	0.44	2.2×10^{-3}
$e^-p \rightarrow \nu_e c \bar{c} c \bar{c} j$	0.20	$1.0 imes 10^{-6}$	0.24	$3.4 imes 10^{-5}$	0.31	$4.3 imes 10^{-5}$
$e^-p \rightarrow \nu_e b \bar{b} j j j$	26.1	$3.9 imes 10^{-3}$	54.2	0.008	67.5	0.01
$e^-p \rightarrow \nu_e c \bar{c} j j j$	29.6	$9.5 imes 10^{-5}$	66.9	2.0×10^{-4}	85.4	2.7×10^{-4}
$e^-p \rightarrow \nu_e j j j j j j$	823.6	$4.1 imes 10^{-5}$	1986	$9.9 imes 10^{-5}$	2586	$1.3 imes 10^{-4}$

Scattered quark is more forward in signal → good discriminant!

Plots for E_e =60 GeV (very similar for 120,150 GeV)

Despite large beam energy imbalance, b-jets are relatively central

(1/0) do/d P_{Tb1}

Tracker Simulation

LicToy http://wwwhephy.oeaw.ac.at/p3w/ilc/lictoy/UserGuide_20.pdf

• Silicon: compact design, low budget material, radiation hard

FCC Study Kickoff Meeting

Electromagnetic Calorimeter

- Simplified design simulation w.r.t. ATLAS
- LAr Calorimeter : good energy resolution, stabl performance Simulation results compatible with ATLAS Warm (Pb/Sci) option also investigated

- 30X₀ (X₀(Pb)=0.56 cm; 20 layers)

