Studying QCD at high field strength in e-A collisions

Prof. Brian A. Cole Columbia University

Low-x, saturation

- Well-known problem with breakdown of linear/ independent evolution of parton distributions at high parton density, low-x (unitarity)
 - ⇒"Saturation"
- Saturation regime indicated by dynamical scale: Q_s
 - ⇒When Q_s >> ∧_{QCD}, unitarity expected to be due to partonic mechanisms (recombination)

Saturation in nuclei

- Different ways to achieve high parton density in hadron-hadron or e-hadron collisions
 - Increase energy
 - ⇒Parton density grows by evolution
 - Increase "density" of hadron
 - ⇒Use nuclei
- In principle, to study parton density effects:
 - ⇒fix (e.g.) DIS kinematics, increase A

Heavy ion "concordance model"

- Initial particle production from strong gluon fields (saturated) in the incident nuclei.
- Created particles rapidly (τ < 0.5-1 fm/c!) thermalize into a strongly coupled QGP.
- QGP evolves hydrodynamically with an η/s ratio close to conjectured lower bound.

Heavy ion "concordance model"

- Initial particle production from strong gluon fields (saturated) in the incident nuclei.
- Created particles rapidly (τ < 0.5-1 fm/c!) thermalize into a strongly coupled QGP.
- QGP evolves hydrodynamically with an η /s ratio close to conjectured lower bound.

 @ High energy nuclei are highly Lorentz contracted

- @ High energy nuclei are highly Lorentz contracted
 - Except for low-momentum gluons which have spatial spread $\Delta z \geqslant \hbar/p_z$
 - ⇒Gluons from many nucleons overlap

- @ High energy nuclei are highly Lorentz contracted
 - Except for soft gluons
 - Which overlap longitudinally
 - And recombine

- @ High energy nuclei are highly Lorentz contracted
 - Except for soft gluons
 - Which overlap longitudinally
 - And recombine
 - Broadening k_T distribution
 - ⇒Generates a new scale: Q_s

- @ High energy nuclei are highly Lorentz contracted
 - Except for soft gluons
 - Which overlap longitudinally
 - And recombine
 - Broadening k_T distribution
 - ⇒Generates a new scale: Q_s
- Naively, for $Q_s >> \Lambda_{QCD}$, perturbative calculations
 - ⇒Large occupation #s for k_T<Q_s ⇒ classical fields
- Saturation associated with ultra-strong gluon fields

proton-lead collisions @ LHC

- Another way to probe high parton density and/or strong gluon fields in nuclei:
 - High-energy proton nucleus collisions
 - ⇒(e.g.) proton-lead collisions at the LHC

proton-lead collisions @ LHC

 Study angular correlations between pairs of particles to look for saturation, other effects.

Surprise: p+Pb Ridge(s)

"low multiplicity"

"high multiplicity"

- Study azimuthal (Δφ) and longitudinal (Δη) correlations between pairs of particles
 - ⇒usual correlations in low-multiplicity events (jets)

Surprise: p+Pb Ridge(s)

"low multiplicity"

"high multiplicity"

- Study azimuthal (Δφ) and longitudinal (Δη) correlations between pairs of particles
 - ⇒usual correlations in low-multiplicity events
 - ⇒additional "ridge" in high-multiplicity events

Surprise: p+Pb Ridge(s)

 Use the peripheral p+Pb data to subtract uninteresting part of the correlation

⇒Similar to collective effects in Pb+Pb

Explained by saturation?

- Theoretical calculations of the effects of saturation can reproduce the data.
- However, there are additional measurements that challenge the saturation explanation
 - Support interpretation that the ridge(s) result from "collective" effects similar to Pb+Pb ??!
 - ⇒In my opinion, can only be understood as resulting from strong gluon fields in initial and final state.

LHC p+Pb progam

- Still early in studying/understanding high parton density effects in p+Pb collisions
 - Several ongoing measurements intended to more specifically test saturation
 - ⇒e.g. forward dijet acoplanarity

 But, p+Pb measurements, while they may show qualitative effects will be "looking through the glass darkly"

Ultra-high energy e+A collisions

- Want to study physics near or below $Q^2 = Q_s^2$
 - But also not too low in Q²
 - ⇒Increased A energy from FCC helpful, increased electron energy an issue for low-Q² acceptance

What do we already know?

- Nuclear PDFs at low Q² poorly determined at lower Q² where we expect saturation effects.
 - Extensive studies in the context of LHeC re: sensitivity of proton and nuclear PDFs to saturation
 - ⇒ A dependence is a valuable handle
 - ⇒ But then we need good control at larger x

Studies for LHeC

- Combination of different structure function measurements at LHeC or future e-A machine
 - will substantially improve knowledge re: nuclear PDFs

- May be already relevant:
 - Interesting result from CMS on charged particle spectrum in proton-lead collisions
 - ⇒Unexpected feature at high p_T, due to nuclear PDF?

From N. Armesto LHeC (Chevannes) talk

LHeO

eA inclusive: comparison

 \bullet Good precision can be obtained for $F_{2(c,b)}$ and F_L at small x

(Glauberized 3-5 flavor GBW model, NA '02).

Heavy Ion Physics in e-A and p/A-A: 3. Physics case in eA.

Diffraction as a low-x probe

LHeO Elastic VM production in eA:

200

Heavy Ion Physics in e-A and p/A-A: 3. Physics case in eA.

W (GeV)

Diffraction as a low-x probe

LH Elastic VM production in eA:

- For the coherent case,
 predictions available.
- Challenging experimental problem (neutron tagging in ZDC)

t dependence

Heavy Ion Physics in e-A and p/A-A: 3. Physics case in eA.

Summary

- High-energy collisions with nuclei a valuable way to study high parton density/strong color field effects
 - "Trivial" way to enhance parton density
 - Different from enhancement due to evolution in proton
- proton-lead collisions have shown features compatible with saturation / strong color fields
 - ⇒But unlikely to obtain the precision needed to properly understand QCD and test theory
- e+A program at LHeC and future FLHeC would provide unique probe of saturation physics
 - ⇒While also radically improving knowledge of nPDFs
 - ⇒Providing critical insight on the initial conditions of heavy ion collisions