

Unconventional issues in conventional facilities for very large circular colliders

Philippe Lebrun
CERN

FCC Study Kick-off Meeting
University of Geneva, 12-15 February 2014

Cost structure of large accelerator projects

"Green field" cost of large accelerator projects

LHC "green field" (reconstructed)

CLIC 500 ≡ "green field"

- Accelerator components
- Accelerator infrastructure
- Civil engineering
- Injectors

Basic footprint

"Quasi-circular" (LEP/LHC)

8th (12th) order symmetry 8 (12) equal arcs 8 (12) equal LSS

Modified "quasicircular"

4th order symmetry 8 (12) equal arcs 4 long LSS 4 (8) short LSS

"Quasi-racetrack" (SSC)

2nd order symmetry

2 equal arcs

A 83 km circular collider: the SSC

Evenly distributed vs clustered IRs From SSC Design report

Evenly distributed

- Higher superperiodicity i.e. fewer resonances in tune space
- Chromaticity accumulates in IRs, reset in neighbouring arcs
- Smaller beam energy sawtoothing for TLEP (even compensation of synchrotron losses around ring)

Clustered

- Superperiodicity broken in large SC machines anyway (magnetic field & alignment errors)
- Optimal use of LSS length leading to higher overall filling factor
- Economy in CE and infrastructure
- Better access for servicing

Beam scraping/ collimation necessary on either side of IPs anyway

Machine perimeter

Perimeter

$$\Pi = 2\pi R/f + N_{exp} L_{exp} + N_{tech} L_{tech}$$

R bending radius

f arc filling factor

N_{exp} number of experiment LSS

L_{exp} length of experiment LSS

- N_{tech} number of technical LSS

L_{tech} length of technical LSS

Minimize machine perimeter to limit

- Cost
- Beam stored energy (for given current/luminosity)
- Beam impedance

Sensitive parameters other than bending field

Arc filling factor

- E [TeV] ~ 0.3 B [T] R [km]
- − Hence dB/B ~ df/f
- Increasing f by 5 % is equivalent to reducing B by 5 %, i.e. 1 T at 20 T

Long straight sections

- Consider 100 km machine with 12 LSS of 2 km each, f = 0.8
- $2\pi R/f = 76 \text{ km} \text{ and } R = 9.7 \text{ km}$
- Consider 100 km machine with 8 LSS of 2 km each, f = 0.8
- $2\pi R/f = 84 \text{ km} \text{ and } R = 10.7 \text{ km}$
- $dR/R = -dB/B \sim -10$ %, i.e. 2 T at 20 T

Tunnel orientation and planarity

A "horizontal" tunnel?

- − Earth ~ sphere / ellipsoid
- D = $100/\pi = 31.8$ km
- h \sim 20 m
- Deviation of vertical ~ 0.28 deg

A tunnel on a sloping plane?

- Solution retained for LEP/LHC
- Elevation difference for FCC is 320 m per % slope

A non-planar tunnel?

- To limit overburden and depth of shafts
- Dihedral (SSC)
- Terrain-following

Getting closer to the Alps

Tunnel geology Depart from current wisdom of "staying in Molasse"

See forthcoming presentation by J. Osborne

MORAINES

CALCAIRES

TUNNEL - Tracé plan

MOLASSE EN PLACE

FLYSCH des VOIRONS

---- TUNNEL - Tracé adapté à la topo

MOLASSE CHARRIEE

FAILLES OU SURFACES DE CHARRIAGE

GEOTECHNIQUE APPLIQUEE DERIAZ S.A.

The Earth is neither a sphere nor an ellipsoid

The geoid from GOCE satellite's observations

The geoid in Switzerland (CHGEO98)

Local models of the geoid Will need to be extended towards the Alps

CERN Geoïde 2000

CHGEO98: cotes rapportées à l'ellipsoïde

Site/size optimization: the case of LEP

- **Geology**: stay out of Trias
- Hydrology: preserve springs at piedmont of Jura
- Geotechnical: maximize tunnel in "molasse" (1.41 % slope)
- **Topography**: limit overburden
- Neighbourhood: integration of surface buildings, noise, road traffic
- Cost
- **Performance**: trade-off CE vs accelerator technology

Access for servicing from CERN main campus

Shortest one-way road trip to potential FCC access points [min] *Itineraries by Via Michelin*

A second campus?

Shortest one-way road trip to potential FCC access points [min] *Itineraries by Via Michelin*

Tunnel cross-section Accelerator components only

LEP/LHC

All tunnels drawn at same scale

CLIC

ILC "klystron cluster"

Tunnel cross-section Accelerator components & technical systems

3700

Need for a safety tunnel?

3800

3500

11000

Sector length A multi-criteria discussion

- Access, egress and personnel safety
- Equipment transport
- Installation rates
- Ventilation
- Electrical distribution
- Cryogenics

See forthcoming presentation by L. Tavian

- Cryoplant unit size
- Distribution lines
- Stored energy in magnets
- Inductance of magnet chains and maximum voltage to ground

Sector length Access, egress and transport

Sector length Piped utilities

- Mass flow-rate m for feeding a sector of length L
 - At constant linear load, m ~ L
- Pressure drop
 - At given fluid density, $\Delta P \sim m^2 L/d^5 \sim L^3/d^5$
 - For fixed ΔP , d ~ L^{3/5}
- Mechanical power for circulation
 - W \sim m $\Delta P \sim L^4/d^5$

⇒ Strong dependence on sector length, unless larger pipe diameters are used

A case in tunnel safety: the ventilation scheme

Longitudinal

- Tunnel is the air duct
- Safety not guaranteed downstream of danger area

Transverse

- Need fresh-air & extraction ducts in tunnel (larger X-section)
- Danger area can be segmented

Sector length Air velocity in longitudinal ventilation

Longitudinal ventilation of long sectors requires excessive air velocities

Sector length

Transverse ventilation of long sectors requires very large ducts \rightarrow separate ventilation tunnel

Sector length Stored energy in twin-aperture dipole chain

Stored energy limited by magnet current, voltage withstand and emergency discharge time

Large machines consume electricity...

Ph. Lebrun

... the price of which will increase

Reference: Pre-tax price of electricity in EUR/MWh

FCC Study Kick-off Meeting

Transport and distribution of electricity HV lines (Source: RTE)

Transport and distribution of electricity Cornier substation with 400 kV line

Transport and distribution of electricity Local networks

- Choice of distribution voltages
- Connection to main substations
- Above ground vs in tunnel
- Network independence & redundancy
- No-break supply

Development of circular accelerators Growth in performance >> growth in size

Lawrence's first cyclotron (1930)

Large Hadron Collider (2009)

Ph. Lebrun

A sustained decrease in specific cost

Specific cost vs center-of-mass energy of CERN accelerators

Cost breakthrough vs gradual progress The case of human genome sequencing

First-order phase transition in cost: CLIC energy stages

Second-order phase transitions in cost: high-field superconducting magnets

Some phase transitions presented in this meeting

- In the FCC-hh injector complex
 - Is the HE injector in the FCC-hh main ring a LHC-like (26.7 km) or a SPS-like (6.9 km) synchrotron?
 - The "latent" cost is $\mathcal O$ (BCHF) for capital expenditure, $\mathcal O$ (tens of MW) for power consumption
 - What is the field swing acceptable in the HE injector? In the main ring?
 - Conversely, with only the 6.3 km high-energy injector, what is the maximum energy achieveable in the main ring?
- In the FCC-ee main ring
 - Transition from single magnetic channel to twin magnetic channel machine: number of bunches (electrostatic separation, beamstrahlung)
 - Minimum number of RF straight sections to stay within allowed energy sawtoothing: important for staging
 - Equip fewer points with RF and cryo at lower energy
 - Operate cryoplants closer to nominal capacity, i.e. better efficiency

Summary and outlook

- Civil engineering and infrastructure represent an important fraction of the capital expenditure of large high-energy accelerator complexes
- Conventional facilities also contribute substantially to electricity consumption and thus to operational expenditure of these machines
- CERN's experience in building machines of increasing size and performance can be applied to the study of 80-100 km circular accelerators in the Geneva basin
- Still, the step from LEP/LHC to FCC represents major challenges which will require inventive solutions in accelerator science & technology as well as in conventional facilities
- We also welcome collaborations with interested partner institutes in the latter domain
- ⇒ Breakout session this afternoon at 14h00, Room M1 130

"La difficulté de réussir ne fait qu'ajouter à la nécessité d'entreprendre"

Beaumarchais

Tunnel geology Exploratory study of 113 km tunnel in Geneva basin (2001)

