
Introduction of CEPC-SppC

Yifang Wang Institute of High Energy Physics, Beijing Feb. 13, 2014, Geneve

CEPC+SppC

- For about 8 years, we have been talking about "What can be done after BEPCII in China"
- Thanks to the discovery of the low mass Higgs boson, and stimulated by ideas of Circular Higgs Factories in the world, CEPC+SppC configuration was proposed in Sep. 2012

A Good Start

- Many workshops, seminars in China and in the world
 - Sep. 2013, Dec. 2013...
- Community support in China
 June 2013, Xiangshan forum
- Start to organize ourselves
- Start to Lobby the government

Report of the ICFA Beam Dynamics Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012)

Alain Blondel¹, Alex Chao², Weiren Chou³, Jie Gao⁴, Daniel Schulte⁵ and Kaoru Yokoya⁶

¹ U. of Geneva, Geneva, Switzerland
 ² SLAC, Menlo Park, California, USA
 ³ Fermilab, Batavia, Illinois, USA
 ⁴ IHEP, Beijing, China
 ⁵ CERN, Geneva, Switzerland
 ⁶ KEK, Tsukuba, Japan

February 15, 2013

A lot more will come !

In Practice

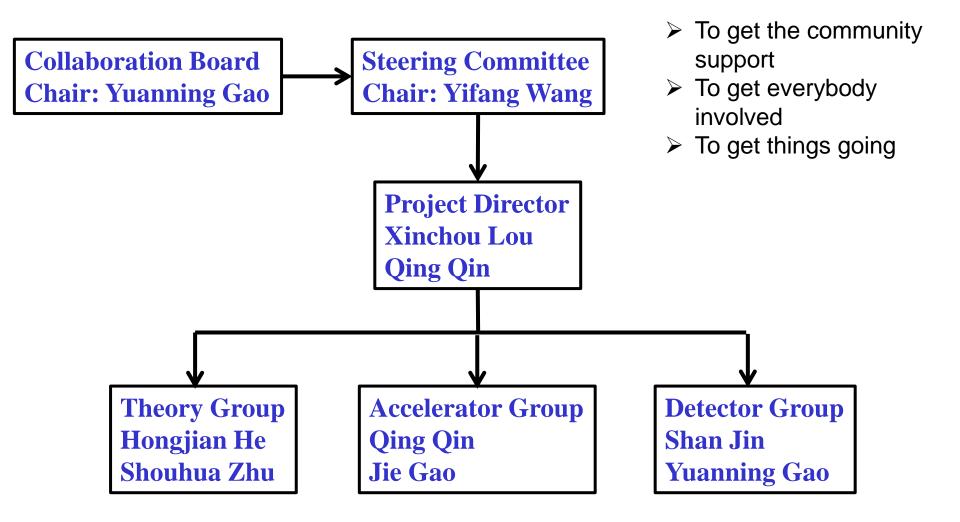
- A circular Higgs factory fits our strategic needs in terms of
 - Science (great & definite physics)
 - Timing (after BEPCII)
 - Technological feasibility (experience at BEPC/BEPCII and other machines in the world),
 - Manpower reality (our hands are free after ~2020)
 - Economical scale (although slightly too high)
- The risk of no-new-physics is complement by a pp collider in the same tunnel
 - A definite path to the future
- A unique position for China to contribute at this moment:
 - Economical growth \rightarrow new funding to the community
 - Large & young population
 new blood to the community
 - Affordable tunnel & infrastructure
 - If no new project, no new resources → It is a pity if we miss it

Issues

- Realistic ?
 - Funding, man power, political issues, technical feasibility,
 - We hope to collaborate with whoever willing to host this machine. Even if the machine is not built in China, the process will help the HEP community
- ILC \rightarrow Complementary
 - No need to have the Push-pull option
 - Low energy(up to 250 GeV)@CEPC vs high energy(up to 1 TeV)@ILC
- LHC \rightarrow Complementary
 - We need to know the Higgs coupling to a great precision
 - Background, systematics, discovery potential, precision...
- Practical issues: too costly ?
 - BEPC cost/4 y/GDP of China in 1984 ≈ 0.0001
 - SSC cost/10y/GDP of US in 1992 ≈ 0.0001
 - LEP cost/8y/GDP of EU in 1984 ≈ 0.0002
 - LHC cost/10y/GDP of EU in 2004 ≈ 0.0003
 - ILC cost/8y/GDP of Japan in $2018 \approx 0.0002$
 - CEPC cost/6y/GDP of China in $2020 \approx 0.00005$
 - SPPC cost/6y/GDP of China in $2036 \approx 0.0001$

Competition and multiple machines are healthy ingredients of our community

Internationalization


- This is a machine for the world and by the world: not a Chinese one
- As a first step, "Center for Future High Energy Physics (CFHEP)" is established
 - Prof. Nima Arkani-Hamed is now the director
 - Many theorists(coordinated by Nima and Tao Han) and accelerator physicists(coordinated by Weiren Chou) from all the world have signed to work here from weeks to months.
 - More are welcome \rightarrow need support from the related management
 - Current work:
 - Workshops, seminars, public lectures, working sessions, ...
 - Pre-CDR
 - Future works (with the expansion of CFHEP)
 - CDR & TDR
 - Engineer design and construction
 - A seed for an international lab →
 Organized and managed by the community
- We hope to closely collaborate with FCC@CERN

Current status

- Organization
- Site
- Initial design effort
- Timeline

Current organization for pre-study

Site

- Preliminary selected: Qinhuangdao (秦皇岛)
- Strong support by the local government

- 300 km from Beijing
- 3 h by car
- 1 h by train

Beautiful Place for a Science Center

Good geological condition

- Base rock type: granite
- Base rock depth: 0.5 2 m
- Seismic intensity: no more than the level 7 (some damage to houses), 0.10g
- Earth vibration(RMS, nm):

	Zhangjiakou	Huailai	/ Qinhuangdao \	Tianjing	Huairou		
1~100hz	~12	~40	~1.9	~470	~60		
4~100hz	~7	~14	~0.8	~24			

Building the tunnel in granite will have the lowest cost

Current design

CEPC basic parameters:

- Beam energy ~120 GeV.
- Synchrotron radiation power ~50 MW.
- 50/70 km in circumference.

SppC basic parameters:

- Beam energy ~50-90 TeV.
- > 50/70 km in circumference.
- ➢ Needs B_{max} ∼20T.

The circumference of CEPC will be determined later based on the cost estimate. A total budget cap is preliminarily set to be about 20B RMB.

Accelerator design: CEPC

- Main ring:
 - A FODO lattice in arcs with 60 degree phase advances
 - 16-folder symmetry
 - RF sections distribute around the ring
 - $f_{rf} = 700 \text{MHz}$ is chosen
 - Pretzel scheme is adopted for multi-bunch collision
 - Double ring option is under-investigation
 - ATF2 type and ILC type FFS designs are currently under study
- Booster:
 - In the same tunnel of the collider (6 120 GeV)
- Linac:
 - 6GeV-Linac will be adopted

Main parameters of CEPC at 50km

Parameter	Unit	Value	Parameter	Unit	Value
Bean Energy	GeV	120	Circumference	km	50
Number of IP		2	L ₀ /IP (10 ³⁴)	cm ⁻² s ⁻¹	2.62
No. of Higgs/year/IP		1E+05	Power(wall)	MW	200
e+ polarization		0	e- polarization		0
Bending radius	km	6.2	N _e /bunch	1E10	35.2
N _b /beam		50	Beam current	mA	16.9
SR loss	(GeV/turn)	2.96	SR power/beam	MW	50
Critical energy of SR	MeV	0.6	ε _x ,n	mm-mrad	1.57E+06
ε _γ ,n	mm-mrad	7.75E+03	β _{IP} (x/y)	mm	200/1
Trans. size (x/y)	μm	36.6/0.18	Bunch length	mm	3
Energy spread SR	%	0.13	Full crossing angle	mrad	0
Lifetime due to Bhabha	sec	930	Damping part. No. (x/y/z)		1/1/2
b-b tune shift x/y		0.1/0.1	Syn. Osci. tune		0.13
RF voltage V _{rf}	GV	4.2	Mom. compaction	1E-4	0.4
Long. Damping time	turns	40.5	Ave. No. of photons		0.59
dB beam-beam	%	0.014			

Main Parameters of SppC

Parameter	SppC-1	SppC-2	
Beam energy (TeV)	25	45	
Circumference (km)	49.78	69.88	
Number of IPs	2	2	
SR loss/turn (keV)	440	4090	
N _p /bunch (10 ¹¹)	1.3	0.98	
Bunch number	3000	6000	
Beam current (mA)	0.5	0.405	
SR power /ring (MW)	0.22	1.66	
В ₀ (Т)	12	19.24	
Bending radius (km)	6.9	7.8	
Momentum compaction (10 ⁻⁴)	3.5	2.5	
β _{IP} x/y (m)	0.1/0.1	0.1/0.1	
Norm. trans. emit. x/y (µm·rad)	4	3	
ξ _y /IP	0.004	0.004	
Geo. luminosity reduction factor F	0.8	0.9	
Luminosity /IP (10 ³⁵ cm ⁻² s ⁻¹)	2.15	2.85	

Detector: From ILD to CEPC

- Many new designs
 - Changed granularity (no power pulsing)
 - Changed L*
 - Changed VTX inner radius and TPC outer Radius
 - Changed Detector Half Z
 - Changed Yoke/Muon thickness
 - Changed Sub detector design
 - ...
- All Changes need to be implemented into simulation, iterate with physics analysis and cost estimation

Timeline (dream)

• CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15
 - Pre-CDR by the end of 2014 for R&D funding request
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035
- SppC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
 - Construction: 2035-2042
 - Data taking: 2042 -

Action items(partially)

- Pre-CDR by the end of 2014
- Approaching the Chinese government in 2015 for R&D funding (next 5-year planning: 2016-2020)
- Get community support in China: ready for some kind of review
- Be active part of the global effort
 - Workshops, joint efforts, statement(?), ...
- Develop documents to address scientific, economical and industrial benefits to China and to the world
- Education: public lectures, books, multi-media, ...
- Media: news release, event coverage, interview, ...

Summary

- It is difficult
- But it is very exciting
- Even if it is not in China, it is still very beneficial to our field and to the Chinese HEP & Science community
- We fully support a global effort

Let's us work for our dream