

FCC Study Kick-off Meeting Cryogenics

Laurent Tavian CERN, Technology Department 14 February 2014

Thanks to Ph. Lebrun for fruitful discussions

- FCC cryogenic study structure and timing
- FCC beam parameters impacting the cryogenic system:
 - Preliminary assessments
 - Possible cryogenic layouts
- Cryogenic challenges for FCC
- Conclusion

Cryogenics for FCC

- Cryogenics for hadron injector
- Cryogenics for hadron collider
- Cryogenics for lepton collider / top-up ring
- Cryogenics for experiments

Each system will require specific studies! → For proximity cryogenics → For cryogenic plants

L. Tavian

The WBS

Accelerat	tors
Had	Iron injectors
	Technical systems
	Proximity cryogenics for hadron injectors
Had	lron collider
	Technical systems
	Proximity cryogenics for superconducting magnets and RF
Lep	ton collider
	Technical systems
	Proximity cryogenics for RF and magnets
Physics a	nd experiments
Had	ron collider experiments
	Technical systems
	Proximity cryogenics for detectors
Lep	ton collider experiments
	Technical systems
	Proximity cryogenics for detectors
nfrastru	ctures and operation
Тес	hnical infrastructures
	Accelerator technical infrastructures
	Cryogenics
	Experiment technical infrastructures
	Cryogenics
	Safety and access systems
	Cryogenics safety functions
_	FCC study kick-off meeting – Cryogenics

14 February 2014

The 3-phase Study

"Explore" study phase

- Probably the most important phase for:
 - understanding the drivers and the functional relation between cryogenics and superconducting devices and beams.
 - defining the basic scaling laws governing the cooling of superconducting devices and the beam induced heating.
 - exploring alternative designs with conventional and non-conventional approaches.
 - iterating towards globally optimized solutions.

Beam parameters impacting FCC-hh cryogenics

Parameter	LHC	HL-LHC	HE-LHC	FCC-hh	Impact
c.m. Energy [TeV]	14		33	100	Synchrotron radiation (~ E ⁴)
Circumference C [km]	26.7		26.7	100 (83)	
Dipole field [T]	8.33		20	16 (20)	Resistive heating, stored energy, quench pressure relief
Straight sections	8		8	12	i.e. 12 arcs
Average straight section length [m]	528		528	1400	→ arc length: ~7 km (~5.5 km)
Number of IPs				2 + 2	Cryogenics for detectors (LHe, LAr)
Injection energy [TeV]	0.45		> 1.0	3.3 (TBC)	SC injector \rightarrow cryogenics
Peak luminosity [10 ³⁴ cm-2s-1]	1	5	5	5	Secondaries from IPs
Optimum run time [h]	15.2	10.2	5.8	12.1 (10.7)	
Beam current [A]	0.584	1.12	0.478	0.5	
RMS bunch length [cm]	7.55		7.55	8 (7.55)	
Stored beam energy [GJ]	0.392	0.694	0.701	8.4 (7.0)	Safety: release of He in tunnel
SR power per ring [MW]	0.0036	0.0073	0.0962	2.4 (2.9)	Large load and dynamic range
Arc SR heat load [W/m/aperture]	0.17	0.33	4.35	28.4 (44.3)	
Dipole coil aperture [mm]	56		40	40	Beam screen design
Beam half aperture [mm]	~20		13	13	

L. Tavian

FCC study kick-off meeting

Crvc

Cryogenics

14 February 2014

The synchrotron radiation

- 28.4 W/m per beam for FCC-hh 100 km, i.e. a total load of 4.8 MW
- 44.3 W/m per beam for FCC-hh 83 km, i.e. a total load of 5.8 MW
- If this load is falling directly on the magnet cold masses working at 1.9 K or 4.5 K (not yet defined), the corresponding total electrical power to refrigerators is
 - > 4.3 or 1.1 GW for FCC-hh 100 km
 - > 5.2 or 1.3 GW for FCC-hh 83 km
- Beam screens are mandatory to stop the synchrotron radiation at a higher temperature reducing the electrical power to refrigerator.
 - > Is there a optimum operating temperature ?

Beam screen – cold mass thermodynamics

T_a: Ambient temperature

Energy balance: $Q_{bs} = Q_{sr} - Q_{cm}$

- Exergy load ΔE = measure of (ideal) refrigeration duty :

 $\Delta E = \Delta E_{cm} + \Delta E_{bs}$ $\Delta E = Q_{cm} \cdot (T_a/T_{cm} - 1) + Q_{bs} \cdot (T_a/T_{bs} - 1)$

- Real electrical power to refrigerator: $P_{ref} = \Delta E/\eta(T)$ with $\eta(T) = efficiency$ w.r. to Carnot = COP_{Carnot}/COP_{Real} $P_{ref} = Q_{cm} \cdot (T_a/T_{cm} - 1)/\eta(T_{cm}) + Q_{bs} \cdot (T_a/T_{bs} - 1)/\eta(T_{bs})$ L. Tavian - FCC study kick-off meeting - Cryogenics - 14 February 2014

BS – CM thermodynamics Numerical application

- $T_a = 290 \text{ K}$, $T_{cm} = 1.9 \text{ K or } 4.5 \text{ K}$, T_{bs} variable
- Q_{sr} = 28.4 or 44.3 W/m per beam (100 or 83 km FCC-hh)
- η(1.9 K)= 17.8 % (COP_{Real}= 900 W/W)
- η(4.5 K)= 28.8 % (COP_{Real}= 220 W/W)
- η(T_{bs}>4.5 K)= η(4.5 K)

 Q_{cm}(T_{bs}) estimated from LHC measurements:

BS – CM thermodynamics Numerical application

Total exergy, ΔE

Total electrical power to refrigerator P_{ref.}

Forbidden by vacuum and/or by surface impedance

 T_{cm} = 1.9 K, optimum for T_{bs} = 70-80 K T_{cm} = 4.5 K, flat optimum for T_{bs} = 120 K

BS – CM thermodynamics Numerical application

- Depending on T_{cm}, synchrotron radiation will cost:
 - ~70-110 MW for FCC-hh
 100 km
 - ~80-130 MW for FCC-hh
 83 km

(extra cost of 50 MW over 10 year of operation, 6000 h per year: 200 MCHF)

Beam screen cooling

Beam screen cooling with He @ 20 bar – 40-60 K

• Pressure drop budget: 2 bar

	Configuration	L max [m]
FCC-hh 100 km	8 capillaries	36
	Annular space	90
FCC-hh 83 km	8 capillaries	25
	Annular space	70

To be compared with the half-cell length of ~100 m

• Total mass-flow / capacity per arc (12 arcs)

	L arc	Q_{bs} per arc		Q _{bs} per arc		Total BS cooling flow
	[m]	[kW]	[Equ. kW @ 4.5 K]	[kg/s]		
FHC 100 km	~7000	~400	~35	~3.7		
FHC 83 km	~5500	~500	~43	~4.6		

 To be compared with the present LHC cryoplants (18 kW @ 4.5 K)
 L. Tavian - FCC study kick-off meeting - Cryogenics -

– 14 February 2014

Cooling potential of cryogens for beam screen

Cryogen	Temperature range	Per unit mass [J/g]	Per unit volume* [J/cm ³]
He 3 bar	5-20 K	103	0.74
He 20 bar	5-20 K	89.3	4.20
He 20 bar	40-60 K	107	1.64
Ne 30 bar	40-60 K	79.1	11.3

* at exit conditions

Operating the beam screen at higher temperature would allow other cooling fluids

→ w/o flow, the BS temperature will decrease down to 1.9-4.5 K → Solidification of cryogens ! L. Tavian – FCC study kick-off meeting – Cryogenics – 14 February 2014

LHC

FCC-hh

L. Tavian – FCC study kick-off meeting – Cryogenics – 14 February 2014

Rough heat load estimate

		L	HC [W/m]]	FCC-hh [W/m]		
Temperature level		ТS 50-75 К	<mark>ВЅ</mark> 4.5-20 К	СМ 1.9 К	TS-BS 40-60 К	CM 1.9 or 4.5 K	
	CM supporting system	1.5		0.10	2.9	0.2	~ CM weight
Static heat inleaks	Radiative insulation			0.11		0.15	~ CM surface area
	Thermal shield	2.7			3.8		~ TS surface area
	Feedtrough & vac. barrier	0.2		0.1	0.2	0.1	
	Total static	4.4		0.3	6.9	0.45	
	Synchrotron radiation		0.33	3	57 (88)	0.2	
Dynamic boot	Image current		0.36		2.7 (2.9)		
loads	Resistive heating			0.1		0.3 (0.4)	~ I^2 , ~ splice Nb & R
	Total dynamic		0.7	0.1	60 (91)	0.5 (0.6)	
Total		4.4	0.7	0.4	67 (98)	1.0 (1.1)	

14 February 2014

Current lead cooling

Rough scaling from LHC:

	LHC	FCC-hh
Dipole Current [kA]	12	20
Nb of circuit per dipole	1	1 to 3
Nb of arc	8	12
Total current (in-out) [MA]	3.4	8 to 25
Current lead consumption [g/s per MA] (conventional CL)	50	50
Total liquefaction rate [g/s] (conventional CL)	170	425 to 1275
Total equivalent entropic cost [kW @ 4.5 K] (conventional CL)	17	42 to 128
Correction factor for HTS current leads	0.33	0.33
Total equivalent entropic cost with HTS leads [kW @ 4.5 K]	6	14 to 43
Arc equivalent entropic cost with HTS leads [kW @ 4.5 K]	0.7	1.2 to 3.6

Cooling requirement

Per arc

w/o cryo-distribution !
w/o operation overhead !

L. Tavian – FCC study kick-off meeting –

Cryogenics

14 February 2014

	Layout 1	Layout 2	Layout 3
Transport of refrigeration	Over 8.3 km (6.9 km) Over 4.2 km		m (3.5 km)
Nb of cryoplants (availability)	12	12	24
Size of cryoplants	Beyond SOTA*	Beyond SOTA*	Within SOTA*
Nb of technical sites	6	12	12
Partial redundancy	Υ	Ν	Υ

*: SOTA, State-Of-The-Art

Cryogenic availability

 \rightarrow i.e. over 200 days of physics per year, only 10 hours of down-time per cryoplant

L. Tavian – FCC study kick-off meeting – Cryogenics – 14 February 2014

Cool-down from 300 to 80 K

			FCC-hh		
		LHC	83 km	100 km	
Specific CM mass	[t/m]	1.7	3	.3	
Arc length	[m]	2800	5500	7000	
Arc mass	[t/arc]	4648	18260	23240	
Nb arc	[t]	8	12	12	
Total mass	[kton]	37	219	279	
LN2 preccooler capacity	[kW/arc]	600	2357	3000	(for a CD time of 2 weeks)
LN2 consumption	[t/arc]	1250	4911	6250	
	[t/machine]	10000	58929	75000	
	[trailer/arc]	42	164	208	$(\sim 20 \pm n \circ n \pm n \circ i \circ n)$
	[trailer/machine]	333	1964	2500	(SU t per traller)

Operation cost and logistics !

Cryogenics for FCC-ee @ 175 GeV (From E. Jensen)

	704 MHz 5-cell cavity	
Gradient	20 MV/m	
Active length	1.06 m	
Voltage/cavity	21.2 MV	
Number of cavities	568	
Number of cryomodules	71	
Total length cryomodules	902 m	(per beam), i.e. 1800 m in total
R/Q	506 Ω	
Q_0	$2.0 \cdot 10^{10}$	
Dynamic heat load per cavity @ 1.9 K:	44.4 W	
Total dynamic heat load	25.2 kW	(per beam), i.e. 50.4 kW @ 1.9 K in total
CW RF power per cavity	176 kW	7
Matched Q_{ext}	$5.0 \cdot 10^{6}$	
		Total electrical power to the refrigerators: ~ 45 MW
Tavian – FCC study k	ick-off meeting –	Cryogenics – 14 February 2014

Cryogenics for FCC-ee

- 12 cryoplants:
 - ~~150 m of RF cavities per cryoplant
 - > 4.2 kW @ 1.9 K of RF power per cryoplants (equivalent to 16 kW @ 4.5 K) w/o:
 - static losses of cryomodule,
 - static and dynamic losses in the couplers
 - cryogenic distribution losses
 - operation overhead
 - > present State-of-the-Art:3.5 kW @ 1.9 K

State-of-the-art of cold compressors (single train)

Lowering operating temperature down to 1.6 K

Control complexity vs CC number

of mixed compression cycles

CC number	Plant	Control
1	CERN SM18 test station	 Very easy. Could be developed by cryo-junior.
2	CEA Tore Supra	- Basic control, but the first in operation.
3	CERN LHC sector	 Need control algorithms which could be developed by cryo-experts. Definitely the preferred configuration of LHC cryo-operators.
4	CERN LHC sector	 Need complex control algorithms developed by experts in hydro-dynamic machines (1 PLC fully dedicated to CC controls). Less tolerant with instrumentation drift, transient effect and operator curiosity.
5 -6	FCC-ee?	?

LHe inventory

- ~ 50 l/m in FCC-hh magnet cold masses,
- ~100 l/m for FCC-ee RF cryo-modules

~ 12 % of EU annual market~ 2.5 % of annual world market

15 t LHe storage

10 t GHe storage

14 February 2014

Impact on environment

Impact on operation cost

- LHC losses of He inventory:
- \rightarrow The first year: 30 %
- \rightarrow The third year: 15 %

Cryogenics

→ Objective: ~10 % per year

Assuming the same losses for FCC-hh: \rightarrow 240 ton to 80 ton per year !

. Tavian	-	FCC study	kick-off meeting	

L. Tavian

Study and development of larger cryoplants (50 kW @ 4.5 K range):

- \rightarrow New type of cycle compressors ? (centrifugal vs screw)
- \rightarrow New refrigeration cycle ? (higher HP pressure)
- \rightarrow Improvement of reliability / availability / efficiency

FCC study kick-off meeting

Cryogenics

14 February 2014

Study and development of larger cold-compressor systems (10 kW @ 1.8 K range):

- → Larger cold compressors development ?
- \rightarrow Operation with parallel cold compressor trains ?
- → Improvement of reliability / availability / efficiency

L. Tavian – FCC study kick-off meeting – Cryogenics

14 February 2014

14 February 2014

Main FCC cryogenics challenges: miscellaneous

- The beam screen cooling:
 - > high heat deposition: up to 44 W/m per aperture
 - > integration of the cooling circuits in a narrow space.
 - > Control of the 40-60 K temperature level with high dynamic range (up to 10)
 - > alternative cooling method (with neon...)
- Management of He inventory and He losses, in particular:
 - > helium release during magnet resistive transitions and cold buffering
- Optimization of the cooling schemes and of the cryogenic distribution
- Safety
 - > preliminary risk analysis including accidental He discharge in the tunnel

Conclusion

- FCC will trigger specific cryogenic studies and developments which will stimulate progress of the state-of-the-art in term of technologies and system reliability and efficiency.
- We hope that the FCC study will also stimulate the worldwide cryogenic community.
 → The sharing of expertise on previous or present projects and studies will be essential.
 → Collaborations are welcome !