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Cryogenics for FCC 

• Cryogenics for hadron injector 

• Cryogenics for hadron collider 

• Cryogenics for lepton collider / top-up ring 

• Cryogenics for experiments 

Each system will require specific studies! 
 For proximity cryogenics 
 For cryogenic plants 
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The 3-phase Study 
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“Explore” study phase 

• Probably the most important phase for: 
– understanding the drivers and the functional 

relation between cryogenics and superconducting 
devices and beams.  

– defining the basic scaling laws governing the 
cooling of superconducting devices and the beam 
induced heating.  

– exploring alternative designs with conventional 
and non-conventional approaches. 

– iterating towards globally optimized solutions. 
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Beam parameters impacting 
FCC-hh cryogenics 

                     Parameter LHC HL-LHC HE-LHC FCC-hh Impact 

c.m. Energy [TeV] 14 33 100   Synchrotron radiation (~ E4) 

Circumference C [km] 26.7 26.7 100 (83) 

Dipole field [T] 8.33 20 16 (20) 
  Resistive heating, stored energy,  
quench pressure relief 

Straight sections 8 8 12   i.e. 12 arcs 
 arc length: ~7 km (~5.5 km) Average straight section length [m] 528 528 1400 

Number of IPs 2 + 2   Cryogenics for detectors (LHe, LAr) 

Injection energy [TeV] 0.45 > 1.0 3.3 (TBC)   SC injector  cryogenics 

Peak luminosity [1034 cm-2s-1] 1 5 5 5   Secondaries from IPs 

Optimum run time [h] 15.2 10.2 5.8 12.1 (10.7) 

Beam current [A] 0.584 1.12 0.478 0.5 

RMS bunch length [cm] 7.55 7.55 8 (7.55) 

Stored beam energy [GJ] 0.392 0.694 0.701 8.4 (7.0)   Safety: release of He in tunnel 

SR power per ring [MW] 0.0036 0.0073 0.0962 2.4 (2.9)   Large load and dynamic range 

Arc SR heat load [W/m/aperture] 0.17 0.33 4.35 28.4 (44.3) 

  Beam screen design  Dipole coil aperture [mm] 56 40 40 

Beam half aperture [mm] ~20 13 13 
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The synchrotron radiation 

• 28.4 W/m per beam for FCC-hh 100 km, i.e. a total load 
of 4.8 MW 

• 44.3 W/m per beam for FCC-hh 83 km, i.e. a total load 
of 5.8 MW 

• If this load is falling directly on the magnet cold masses 
working at 1.9 K or 4.5 K (not yet defined), the 
corresponding total electrical power to refrigerators is  
– > 4.3 or 1.1 GW for FCC-hh 100 km 
– > 5.2 or 1.3 GW for FCC-hh 83 km 

• Beam screens are mandatory to stop the synchrotron 
radiation at a higher temperature reducing the 
electrical power to refrigerator. 
– > Is there a optimum operating temperature ? 
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Beam screen – cold mass 
thermodynamics 

- Exergy load DE = measure of (ideal) refrigeration duty :  
DE = DEcm + DEbs  

DE = Qcm . (Ta/Tcm – 1) + Qbs . (Ta/Tbs – 1) 
 
- Real electrical power to refrigerator:  Pref= DE/h(T)  

with h(T) = efficiency w.r. to Carnot = COPCarnot/COPReal  
Pref = Qcm . (Ta/Tcm – 1)/h(Tcm) + Qbs  . (Ta/Tbs – 1)/h(Tbs)   

Qsr

Cold bore (Tcm)

Beam screen (Tbs)

beam

Qcm

Cooling channel (Tbs)
Qbs

Support

Ta: Ambient temperature

Energy balance:
Qbs = Qsr - Qcm
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BS – CM thermodynamics 
Numerical application 

• Ta = 290 K,      Tcm = 1.9 K or 4.5 K,      Tbs variable 
• Qsr = 28.4 or 44.3 W/m per beam (100 or 83 km FCC-hh) 
• h(1.9 K)= 17.8 % (COPReal= 900 W/W) 
• h(4.5 K)= 28.8 % (COPReal= 220 W/W) 
• h(Tbs>4.5 K)= h(4.5 K) 

 
 

• Assume LHC-type BS 
• Qcm(Tbs) estimated from 

 LHC measurements: 
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Average beam-screen temperature ,Tbs [K] 
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BS – CM thermodynamics 
Numerical application 

               Total exergy, DE                             Total  electrical power to refrigerator Pref. 

Tcm= 1.9 K, optimum for Tbs= 70-80 K 
Tcm= 4.5 K, flat optimum for Tbs= 120 K 

Forbidden by vacuum  
and/or by surface impedance 



BS – CM thermodynamics 
Numerical application 

• Depending on Tcm, 
synchrotron radiation will 
cost: 
– ~70-110 MW for FCC-hh 

100 km 
– ~80-130 MW for FCC-hh 

83 km 
 

(extra cost of 50 MW over  
10 year of operation, 6000 h 
per year: 200 MCHF) 
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Beam screen cooling 

LHC                                        FHC 

SC coil inner diameter

 56 mm 40 mm

Cold bore

N cooling capillaries
Dh= ~3 mm

Annular space cooling
Dh= ~6 mm

Beam aperture ( 26 mm)

2 cooling capillaries
Dh= 3.7 mm

Pumping slots
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Beam screen cooling with 
He @ 20 bar – 40-60 K 

• Pressure drop budget: 2 bar 

 

 

 

 

• Total mass-flow / capacity per arc (12 arcs) 

 

 

 

 

• To be compared with the present LHC cryoplants  
(18 kW @ 4.5 K) 

 

Configuration L max [m] 

FCC-hh 100 km 
8 capillaries 36 

Annular space 90 

FCC-hh 83 km 
8 capillaries 25 

Annular space 70 

L arc  Qbs per arc Total BS cooling flow 

[m] [kW] [Equ. kW @ 4.5 K] [kg/s] 

FHC 100 km ~7000 ~400 ~35 ~3.7 

FHC 83 km ~5500 ~500 ~43 ~4.6 

To be compared 
with the half-cell 
length of ~100 m 
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Cooling potential of 
cryogens for beam screen  

Operating the beam screen at higher temperature would allow other cooling fluids 
 w/o flow, the BS temperature will decrease down to 1.9-4.5 K  Solidification of cryogens ! 
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Cryo-magnet cross section 

0.57 m 

0.78 m 

LHC                                          FCC-hh 

~0.8 m

~1.1 m

~1.2 m
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Rough heat load estimate  

Temperature level 

LHC [W/m] FCC-hh [W/m] 

TS 
50-75 K 

BS 
4.5-20 K 

CM 
1.9 K 

TS-BS 
40-60 K 

CM 
1.9 or 4.5 K 

Static 
heat 

inleaks 

CM supporting system 1.5 0.10 2.9 0.2 ~ CM weight 

Radiative insulation 0.11 0.15 ~ CM surface area 

Thermal shield 2.7 3.8 ~ TS surface area 

Feedtrough & vac. barrier 0.2 0.1 0.2 0.1 

Total static 4.4 0.3 6.9 0.45 

Dynamic 
heat 
loads 

Synchrotron radiation 0.33 e 57 (88) 0.2 

Image current 0.36 2.7 (2.9) 

Resistive heating 0.1 0.3 (0.4) ~ I2, ~ splice Nb & R 

Total dynamic 0.7 0.1 60 (91) 0.5 (0.6) 

Total 4.4 0.7 0.4 67 (98) 1.0 (1.1) 
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Current lead cooling 

LHC FCC-hh 

Dipole Current [kA] 12 20 

Nb of circuit per dipole 1 1 to 3 

Nb of arc 8 12 

Total current (in-out) [MA] 3.4 8 to 25 

Current lead consumption [g/s per MA] (conventional CL) 50 50 

Total liquefaction rate [g/s] (conventional CL) 170 425 to 1275 

Total equivalent entropic cost [kW @ 4.5 K] (conventional CL) 17 42 to 128 

Correction factor for HTS current leads 0.33 0.33 

Total equivalent entropic cost with HTS leads [kW @ 4.5 K] 6 14 to 43 

Arc equivalent entropic cost with HTS leads [kW @ 4.5 K] 0.7 1.2 to 3.6 

Rough scaling from LHC:  
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Beam screen Thermal shield Cold mass CL

Cooling requirement 

w/o cryo-distribution ! 
w/o operation overhead ! 

LHC cryoplant 

State-of-the-art cryoplant 

LHC installed power 

Per arc 

For FCC-hh (12 arcs) 
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Cryogenic layout 

Layout 1 Layout 2 Layout 3 

Transport of refrigeration Over 8.3 km (6.9 km)  Over 4.2 km (3.5 km) 

Nb of cryoplants (availability) 12 12 24 

Size of cryoplants Beyond SOTA* Beyond SOTA* Within SOTA* 

Nb of technical sites 6 12 12 

Partial redundancy Y N Y 

Layout 1 
Arc cooling 

12 cryoplants 
6 technical sites 

Layout 2 
½ arc cooling 
12 cryoplants 

12 technical sites 

Layout 3 
½ arc cooling 
24 cryoplants 

12 technical sites 

*: SOTA, State-Of-The-Art 



Cryogenic availability 
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Cryoplant availability

8 cryoplants

12 cryoplants

24 cryoplants

Run1 LHC  
cryo-availability 

Improvement of cryoplant availability from 99.4 % to 99.8 % 
 i.e. over 200 days of physics per year, only 10 hours of down-time per cryoplant  
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Cool-down from 300 to 80 K 

LHC 
FCC-hh 

83 km 100 km 

Specific CM mass [t/m] 1.7 3.3 

Arc length [m] 2800 5500 7000 

Arc mass [t/arc] 4648 18260 23240 

Nb arc [t] 8 12 12 

Total mass [kton] 37 219 279 

LN2 preccooler capacity [kW/arc] 600 2357 3000 

LN2 consumption 

[t/arc] 1250 4911 6250 

[t/machine] 10000 58929 75000 

[trailer/arc] 42 164 208 

[trailer/machine] 333 1964 2500 

(for a CD time of 2 weeks) 

(~30 t per trailer) 

Operation cost and logistics ! 



Cryogenics for FCC-ee @ 175 GeV 
(From E. Jensen) 

𝟕𝟎𝟒 MHz  5-cell cavity 

Gradient 20MV m  

Active length 1.06 m 

Voltage/cavity 21.2 MV 

Number of cavities 568 

Number of cryomodules 71 

Total length cryomodules 902 m 

𝑅 𝑄   506 Ω 

𝑄0  2.0 ∙ 1010 

Dynamic heat load per cavity @ 
1.9 K: 

44.4 W 

Total dynamic heat load 25.2 kW 

CW RF power per cavity 176 kW 

Matched 𝑄𝑒𝑥𝑡 5.0 ∙ 106 

(per beam), i.e. 1800 m in total 

(per beam), i.e. 50.4 kW @ 1.9 K in total 

Total electrical power to  
the refrigerators: ~ 45 MW 

L. Tavian               –               FCC study kick-off meeting               –                Cryogenics                 –             14 February 2014 



Cryogenics for FCC-ee 
• 12 cryoplants: 

– > ~150 m of RF cavities per 
cryoplant 

– > 4.2 kW @ 1.9 K of RF power 
per cryoplants (equivalent to 
 16 kW @ 4.5 K) w/o: 
•  static losses of cryomodule,  
• static and dynamic losses in the 

couplers 
• cryogenic distribution losses 
• operation overhead 

– > present State-of-the-Art:  
3.5 kW @ 1.9 K 
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FCC-hh (Tcm 1.9 K, 100 km) 



Lowering operating 
temperature down to 1.6 K 

Beyond SOTA 

Lambda Point
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Control complexity vs CC number 
of mixed compression cycles 

CC number Plant Control 

1 
CERN SM18 test 
station 

- Very easy. 
- Could be developed by cryo-junior. 

2 CEA Tore Supra - Basic control, but the first in operation. 

3 CERN LHC sector 

- Need control algorithms which could be 
developed by cryo-experts. 
- Definitely the preferred configuration of 
LHC cryo-operators. 

4 CERN LHC sector 

- Need complex control algorithms 
developed by experts in hydro-dynamic 
machines (1 PLC fully dedicated to CC 
controls). 
- Less tolerant with instrumentation drift, 
transient effect and operator curiosity. 

5 -6 FCC-ee ? ? 
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Recovery time of a cold 
compressor trip vs CC number 

AL unit stop (3 CC): 
~ 3 hours of  

recovery  time 
 
 
 
 
 
 
 

IHI-Li unit stop (4 CC): 
~ 7 hours of  

recovery time 

L. Tavian               –               FCC study kick-off meeting               –                Cryogenics                 –             14 February 2014 



LHe inventory 
• ~ 50 l/m in FCC-hh magnet cold masses,  
• ~100 l/m for FCC-ee RF cryo-modules 
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CM Cryo-distribution and cryoplant

Impact on environment 
 
Impact on operation cost  
LHC losses of He inventory: 
 The first year: 30 %  
 The third year: 15 % 
 Objective: ~10 % per year 
 
Assuming the same losses for FCC-hh: 
 240 ton to 80 ton per year ! 

10 t GHe storage 15 t LHe storage 

~ 12 % of EU annual market 
~ 2.5 % of annual world market 
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Main FCC cryogenics challenges: 
Cryogenic plants 

Study and development of larger cryoplants (50 kW @ 4.5 K range): 
 New type of cycle compressors ? (centrifugal vs screw) 
 New refrigeration cycle ? (higher HP pressure) 
 Improvement of reliability / availability / efficiency 
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Main FCC cryogenics challenges: 
superfluid refrigeration 

Study and development of larger cold-compressor systems (10 kW @ 1.8 K range):  
 Larger cold compressors  development ?  
 Operation with parallel cold compressor trains ? 
 Improvement of reliability / availability / efficiency 
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Main FCC cryogenics challenges: 
miscellaneous 

• The beam screen cooling: 
– > high heat deposition: up to 44 W/m per aperture 
– > integration of the cooling circuits in a narrow space. 
– > Control of the 40-60 K temperature level with high dynamic range 

(up to 10) 
– > alternative cooling method (with neon…) 

 

• Management of He inventory and He losses, in particular: 
– > helium release during magnet resistive transitions and cold buffering 

 
• Optimization of the cooling schemes and of the cryogenic 

distribution 
 

• Safety 
– > preliminary risk analysis including accidental He discharge in the 

tunnel 
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Conclusion 

• FCC will trigger specific cryogenic studies and 
developments which will stimulate progress of 
the state-of-the-art in term of technologies 
and system reliability and efficiency. 

• We hope that the FCC study will also stimulate 
the worldwide cryogenic community. 
 The sharing of expertise on previous or 
present projects and studies will be essential. 
 Collaborations are welcome !  
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