Overview of HiLumi LHC Low-β quadrupoles and FRESCA2

P. Ferracin

European Organization for Nuclear Research (CERN)

Future Circular Collider Study Kick-off Meeting University of Geneva, Switzerland 12-15 February, 2014

Acknowledgments HiLumi LHC Low-β quadrupoles

• CERN

- TE/MSC/MDT section
 - S. Izquierdo Bermudez, P. Ferracin, M. Juchno, L. Lambert, J. Mazet, J. C. Perez, E. Todesco
- TE/MSC/CSD section
 - A. Ballarino, B. Bordini, L. Oberli
- TE/MSC/LMF section
 - H. Prin
- EN/MME/EDM section
 - B. Favrat, T. Sahner, J. Parrilla Leal
- LARP
 - BNL
 - M. Anerella, A. Ghosh, J. Schmalzle
 - FNAL
 - G. Ambrosio, R. Bossert, G. Chlachidze, S. Krave, M. Yu,
 - LBNL
 - F. Borgnolutti, D. Cheng, D.R. Dietderich, H. Felice, A. Godeke, R. Hafalia, M. Marchevsky, G. Sabbi
- LASA
- G. Manfreda, V. Marinozzi, M. Sorbi

Acknowledgments FRESCA2

• CERN

– TE/MSC/MDT section

- V.I. Datskov, P. Ferracin, P. Fessia, J. E. Munoz Garcia, R. Gauthier, J. C. Perez, G. de Rijk, and E. Todesco (and A. Milanese)
- TE/MSC/CSD section
 - A. Ballarino, B. Bordini, L. Oberli
- TE/MSC/TF section
 - H. Bajas, M. Bajko, M. Charrondiere, C. Giloux
- EN/MME/EDM section
 - M. Guinchard, D.T. Ziemianski

• CEA/Saclay

• M. Devaux, M. Durante, P. Fazilleau, P. Manil, J. F. Millot, J. M. Rifflet, F. Rondeaux,

3

HiLumi LHC Low-β quadrupoles MQXF Overview

- Target: 140 T/m in 150 mm aperture
- Q1/Q3 (by LARP) 4.0 m long
- Q2 (by CERN), 6.8 m long
- Baseline: different lengths, same design
- Plan
 - Short model program: 2014-2016
 - Long model program: 2015-2017
 - Series production: 2017-2021
- <u>Accelerator quality Nb₃Sn cos29 coils</u> and magnet in the 12 T operational field <u>level</u>

4

FRESCA2 Overview

Goals

- Upgrading the CERN cable test facility FRESCA
 - 88 mm → 100 mm aperture
 - 10 T \rightarrow 13 T, ultimate 15 T
 - Nb-Ti → Nb₃Sn
- Provide background field for HTS insert
- Plan
 - Coil fabrication: 2014-2015
 - Magnet tests: 2015-2016
- Development of block-type coil design towards high field and large forces
 - Following HD2/HD3 experience
 - No accelerator quality

Field levels

Jc of virgin strand (4.2 K)
 – 2500 A/mm² at 12 T, 1400 A/mm² at 15 T

• MQXF

High **Lumi**nosity

U.S. LARP

HC

- 0.85 mm strand
- Operational: 12 T (82% of Iss)
- Maximum: 14.5 T

• FRESCA2

- 1 mm strand
- Operational: 13 T (72% of I_{ss})
- Maximum: ~18 T

Coil technology

• MQXF

- Cos2 ϑ coils
 - 18 mm wide cable
 - Field quality, alignment, cooling, length, *quench protection (!)*
- To be fabricated: 200 coils

• FRESCA2

• Block-type Coils

- 21 mm wide cable
- 2 double-layers with flared ends
 - No field quality
- To be fabricated: 8 coils

Cu practice coil

Support structure

• MQXF

- Al shell preloaded with bladders
 - Capability of delivering large force
- OD 630 mm
- Challenges
 - Compatibility with accelerator
 - Alignment, cooling , Lhe containment, integration (size)

• FRESCA2

- Same concept, pushed to 15 T
 - 100 mm clear bore
- OD: 1.030 m
- 3 pre-load and cool-down with Al dummy coil performed in 2013
 - Increasing pre-load force

Computations with sector coils

uminosity

U.S. LARP

- $-F_{x}$ on FRESCA2 (15T) similar to 20T magnet (80 mm coil)
- Large apertures of MQXF and FRESCA2 (15T) -> large F_{2}
- $-\sigma_{av}$ of 11T-MQXF not far from 16T magnet (60 mm coil)
- Challenges: peak stresses and overall size

Appendix

Sector coils

		16 T	20T	11T	MQXF	FRESCA2
A/m2	J	385000000	365000000	54000000	498000000	29000000
m	r1	0.02	0.02	0.03	0.075	0.05
m	r2	0.08	0.1	0.0598	0.112626	0.125
m	w	0.06	0.08	0.0298	0.037626	0.075
T or T/m	B1 or G	-16	-20	-11	-140	-15
N/m	Fx tot (half magnet)	10834197	20400788	4956370	5405177	17418028
Ν	Fz tot aperture	1152598	2592026	510863	1447113	3370570
Мра	Max stress on mid-plane	-121	-171	-116	-125	-158

LHC low- β quadrupole overview

- Present Nb-Ti low-β quadrupole
 - Nominal luminosity
 - $L_0 = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Integrated luminosity
 - \sim 300–500 fb⁻¹ by 2021
- 2004, start of LARP Nb₃Sn program
 - Same gradient in larger aperture for ultimate luminosity $(2-3 \cdot L_0)$
- 2008, two-phase upgrade
 - Phase-I, NbTi for ultimate
 - Phase-II, Nb₃Sn for higher L
- 2012, large aperture Nb₃Sn design
 - Increase the peak luminosity by a factor of 5 and reach 3000 fb⁻¹ of integrated luminosity

LHC low- β quadrupole support structures

- Cold mass OD from 490/420 in MQXA-B to 630 mm in MQXF
 - More than double the aperture
 - ~4 times the e.m. forces in straight section
 - ~6 times the e.m. forces in the ends

MQXA MQXB MQXF In scale

Quench protection

(G. Manfreda, V. Marinozzi, M. Marchevsky, T. Salmi, M. Sorbi, E. Todesco)

- Trace Heating stations in outer layer only with 50 µm polyimide ins.
 - Heater delay of about 17 ms
- Before, 10 ms of validation and, after, 20 ms of outer-to-inner delay
- From simulations, hot spot T of 350 K (34 MIITS)
- Working group to define mitigation strategies
 - Modelling of material properties (bronze) and quench-back + *dI/dt* effects
 - Redundancy and CLIQ system
 - Inner layer quench heater (50% open for cooling)

Lengths

- Short coils (CERN + LARP)
 - 19 + <mark>13</mark> = 32 coil
 - 4.8 km cable
 - 208 km strand
- Long model + series

uminosity

U.S. LARP

- (15+45)+(18+90) coils = 60+108 coils = 168 total coils
- 43 + 46 km cable = 90 km cable
- 1800 + 1950 km strand = 3750 km strand

	Short model	Q1/Q3 (half unit)	Q2
Magnetic length [m]	1.2	4.0	6.8
"Good" field quality [m]	0.5	3.3	6.1
Coil physical length [m]	1.5	4.3	7.1
Cable unit length per coil [m]	150	430	710
Strand per coil [km]	6.5	18	30

FRESCA2 (2D) $13T \rightarrow 15T$

November 2013

13T

Jorge Enrique MUÑOZ GARCIA

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 22, NO. 3, JUNE 2012

Callan/aail	Desition	Azimuthal Coil Stress, MPa				
design	in coil	Under press	Collared coil	Cold mass	Cool down	B=12T min/max
	Inner pole	-126	-92	-143	-115	-27/-5
Removable	Outer pole	-87	-52	-65	-61	-37/-5
poles	Inner midplane	-115	-55	-65	-58	-134
	Outer midplane	-91	-66	-95	-94	-127
	Inner pole	-69	-54	-108	-124	-7/0
Integrated	Outer pole	-97	-65	-70	-50	-14/0
poles	Inner midplane	-148	-102	-71	-67	-136
	Outer midplane	-79	-55	-78	-66	-116

TABLE III MAXIMUM AZIMUTHAL COIL PRE-STRESS IN POLE AND MID-PLANE REGIONS

better stress distribution between inner and outer layers after cooling-down.

The required coil pre-stress in the twin-aperture demonstrator dipole is created in several steps. The initial pre-loading is obtained by ~ 0.100 mm mid-plane and 0.025 mm radial shims during the collaring of the coils. The maximum achievable prestress in the pole region is limited at this stage by the maximum coil stress near the mid-plane. During the cold mass assembly

Fig. 7. Azimuthal stress distribution in the coils after the cold mass assembly at room temperature (top), after cool-down (middle) and at 12 T (bottom) for removable pole (left) and integrated pole (right) designs.

system with outer-layer heaters must rely on highly efficient protection heaters. Experimental studies and optimization of the protection heaters are a key part of the demonstrator magnet test program.

Mechanical analysis

(by M. Juchno)

- Optimization of dimensions and locations of new features
- ≥2 MPa of contact pressure at up to 155 T/m (~90% of I_{ss})
- Peak coil stress: -160/-175 MPa
- Coil displ. from start to nominal grad.
 - Radial/azimuth.: -0.3/-0.04 mm
 - Effect on field quality: 0.75 units of b_6

