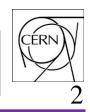
h-h physics, experiments, detectors

Magnet concepts for experiments at a 100-TeV pp collider: Herman TEN KATE

Machine detector interface issues: Austin BALL (CERN)

Operation at shorter than 25-ns bunch spacing : Benedetto GORINI (CERN)

Radiation issues and tracking concepts: Werner RIEGLER (CERN)

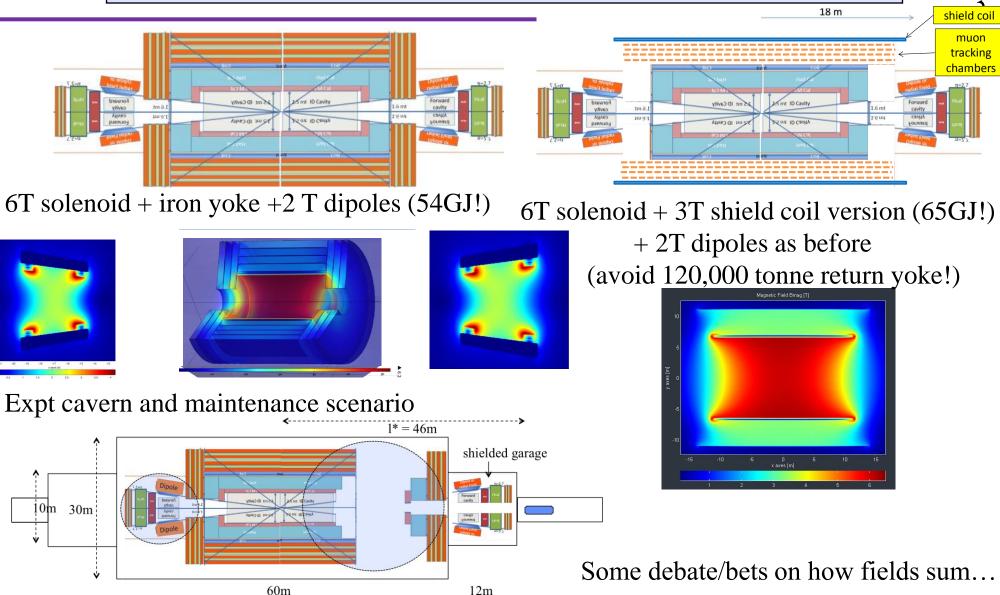

Parton distribution functions for 100 TeV pp colliders: Juan ROJO (CERN)

 $V \rightarrow jj$ studies with jet substructures: Maurizio PIERINI (CERN)

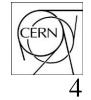
Dark matter studie: David COTé (Arlington UT), Benjamin HOOBERMAN (FNAL)

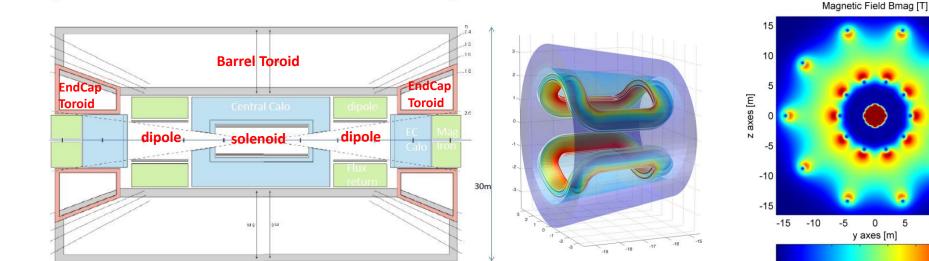
Organisation and discussion of the future activities: Austin BALL (CERN), Fabiola GIANOTTI (CERN), ALL

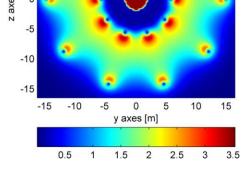
h-h physics, experiments, detectors

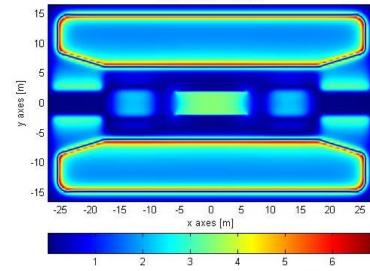

Physics objectives drive the experiment design (see FG/DF at h-h plenary session) - design is mechanically and dimensionally dominated by the magnet choices.

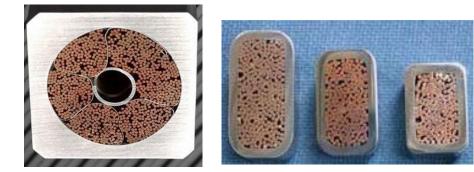
 $\begin{array}{l} \mbox{High p_T region (up to η ~ 2.5)$: continue search for high mass states (up to ~50 TeV)$ barrel & endcaps look like ATLAS/CMS$ but BL² x 7 (for same sensor resolution)$ \\ \mbox{Forward region (η > 2.5)$: extend precision Higgs meas. to high η + high mass VV$ new dipole spectrometer and forward calorimetry? (or is this a separate experiment?)$ \\ \end{array}$


A few designs examined and simulated : at least 2 feasible options identified others exist if trade off BL^2 increase for substantially improved sensor resolution

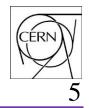

Construction, maintenance & operation determine cavern, shaft & surface infrastructure Radiation environment has a big influence on the design; detailed simulations needed ALARA requirements *must* be engineered into FCC hh GP expts & infra from the outset Detector services (source of most unplanned interventions with little cooling time) executed to a very high reliability & redundancy standard Machine interface parameters to study are min bunch spacing & max length lumi region




Toroid with diploles



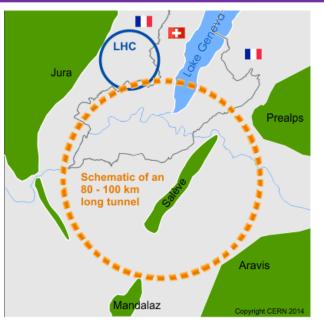
3.5T solenoid + 1.7T toroid + 2T dipoles (55GJ)



52m

cable in conduit conductor for toroids & dipoles

Construction ?

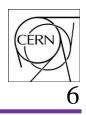

Preferred model would be worldwide modular construction Feasible for FCC expt dimensions??

Expt location/surface site should allow:

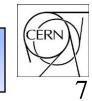
- Access for heavy, outsize & unusual loads

-direct routing of large components to site from manufacturer.

-complete construction of large elements on site (surface or underground)



Assuming GP expt sites diametrically opposite, at least 1 site will need substantial autonomy


1WX 159

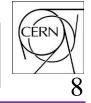
Surface buildings & caverns

Consider all conceivable applications of the tunnel & caverns over 50 years eg exchange of whole expt conceivable or not? -Adequate assembly hall(s) for surface pre-assembly -Detectors Services ready for surface pre-testing power cooling (water $+ CO_2$ no fluorocarbons!) specialist gases (no fluorocarbons!) detector environment control -Detector maintenance laboratories and workshops bearing in mind potential 50 year lifetime of site -Storage facilities for assembly & maintenance tooling spares for local infrastructure equipment. Heavy lowering (a la CMS) after surface assembly an option or not? :shared between detector and service caverns? :shared between experiment and accelerator? These as possible on surface (power, cryo(?), trigger or trigger-less) -Can the service caverns be smaller than at LHC? Shielding should allow service cavern to be accessed during operations at max luminosity

AT

1MeV neq Fluence
$$[cm^{-2}] \approx \frac{N_0}{2r[cm]^2 \pi} \times N_{pp}$$
 Dose $[Gray] \approx 3.2 \times 10^{-10} \frac{N_0}{2r[cm]^2 \pi} \times N_{pp}$
Function only of distance from beampipe
Assuming: no magnetic field

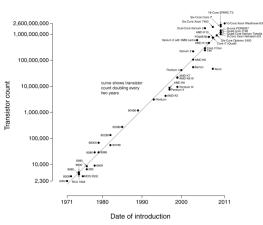
: considering only primary charged hadrons from pp collisions valid up to r~ 10cm, beyond that curling particles and neutrons


cf HL-LHC pp xsect increases by 25%, multiplicity by about 50% FCC- hh 100mb inelastic pp crossection $dN/d\eta = N0 = 8$ for 3000 fb⁻¹ = 3 * 10¹⁷ events a Pixel tracker layer1 at r=3.7cm will see 1MeVneq fluence = 3*10¹⁷*8/(2* π *3.7²) = 2.8*10¹⁶ cm⁻² Dose = 3.2x10-8*2.8*1016 = 9MGy

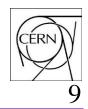
only 2x the HL-LHC fluence and dose numbers

Detailed Fluka simulations needed detector design.

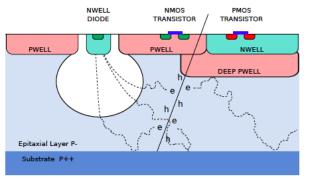
Assume Moore's law applies from 2014-2034 factor $2^{10} = 1024$ in transistor count & storage capacity

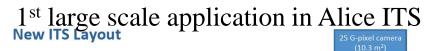

CMS assumes 5MByte/event for its HL-LHC detector (at levelled luminosity of 5x10³⁴)

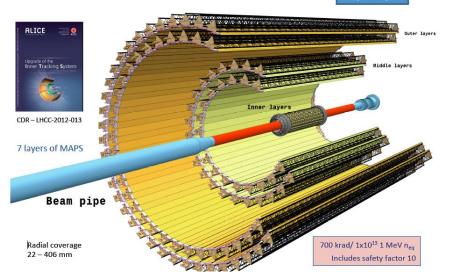
At 40MHz bunch crossing rate --> 200TByte/s into the online system for a triggerless readout.


For 2022, a trigger-less readout is considered too challenging

But...assuming that the total track rate for FCC (100TeV) pp collisions is only a factor 2 larger, there is very little doubt that by 2035, an FHC detector can be read out in a triggerless fashion.


All data to the online system, synchronous or asynchronous.


Tracking technology-pixel revolution



Hybrid --> monolithic: complex processing electronics integrated into the sensor wafer.

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

Dramatic decrease in cost.

Very low power consumption, possibly <100mW/cm² i.e. simple water cooling

Ultra low material budget <0.5% for inner layers, <1% for outer layers.

Questions to answer about speed and radiation hardness:

Present, integration time ~ 4 μ s (noise, electron diffusion) radiation resistance up to few 10¹³ neq.

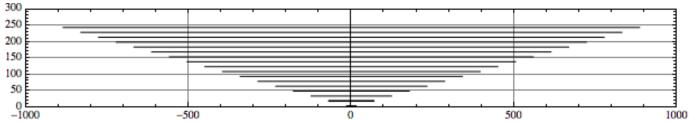
Development (next 20 years) towards larger (full) depletion will improve speed and radiation hardness significantly.

Use 1 or 2 layers with 'fast' pixels to do the BCID (25ns or even 5ns) and then match the other hits.

With a full pixel tracker of 20x20um pixels, pile up can be v. large before occupancy becomes a problem.

MAPS may also be the future for digital calorimetry

Fast timing layers in tracker


The TDCpix readout ASIC: A 75 ps resolution timing front-end for the NA62 Gigatracker hybrid pixel detector

CrossMark

A. Kluge^{*}, G. Aglieri Rinella, S. Bonacini, P. Jarron¹, J. Kaplon, M. Morel, M. Noy, L. Perktold, K. Poltorak

CERN, Geneva, Switzerland

Time resolution < 200ps --> BCID feasible even for 5ns FHC bunchcrossing.

Tracker cylinders from $\eta = 0$ to 2 17 layers at radii 4+n*15cm (n=1 to 16) first at 4cm, last at 244cm, total area = 1600m²

First 4 layers , 'fast' for BCID, 13 layers "slow" e.g. 100ns monolithic pixels (neq <10¹⁵cm⁻²)

Including forwards discs around 3000m² = 6 times CMS = 300 times ALICE 3000m² with 20x20um pixels = 7500GPixel = 7.5TPixel

Estimate 750Tbytes/second to online system

Bunch spacing --> 5ns ?

O. Dominguez Sanchez De La Blanca Would 5ns bunch spacing give better operational conditions 10[.] (5ns may be only viable spacing below 25ns – e-cloud) Heat load (W/m) Balance of in-time pileup vs out-of time pileup η_{eff} = 99.9% 0.1 <u>5 ns</u> **Bunch 25ns** 0.01 spacing .5 ns 5 ns Pileup 170 34 Measured HL at LHC (Fill #3429) 0.001 1.3 1.6 1.9 2.2 2.8 By reducing emittance, get same lumi at 5 x lower pileup 2.53.1 δ_{max}

Alternatively (practically) maybe x 2 lumi at same pileup (170)

To profit, need fast technology for tracking, calorimetry & trigger (if any)

--> higher power, high granularity, digital systems

R & D needed on: high-speed, low power, radhard links (will not come from industry)

: fast calorimetry (eg Si based sampling calo)

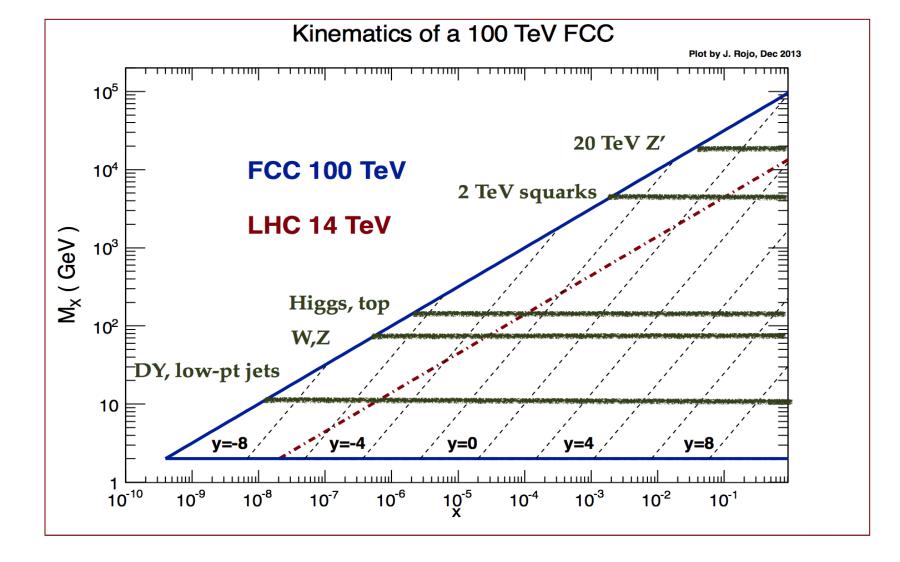
: fast, rate tolerant muon trigger chambers

: FE zero suppression - combat x5 in analog data volume (or go digital)

: various DAQ options including 40MHz with time-stamping

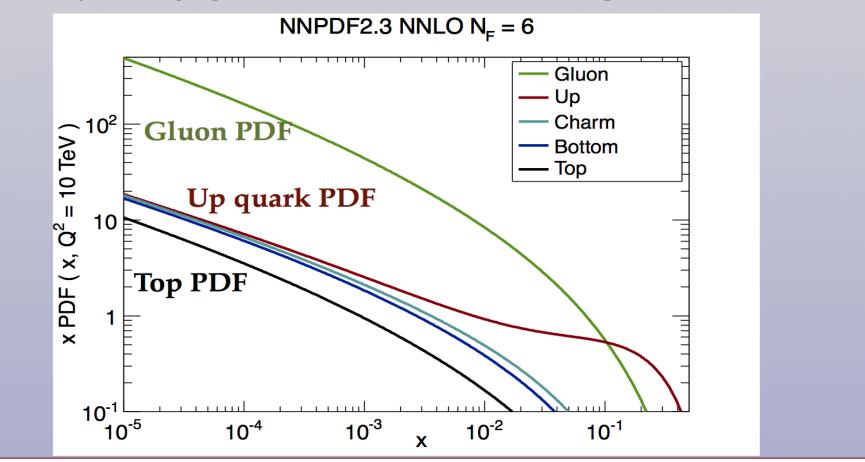
Bunch spacing --> 5ns ?

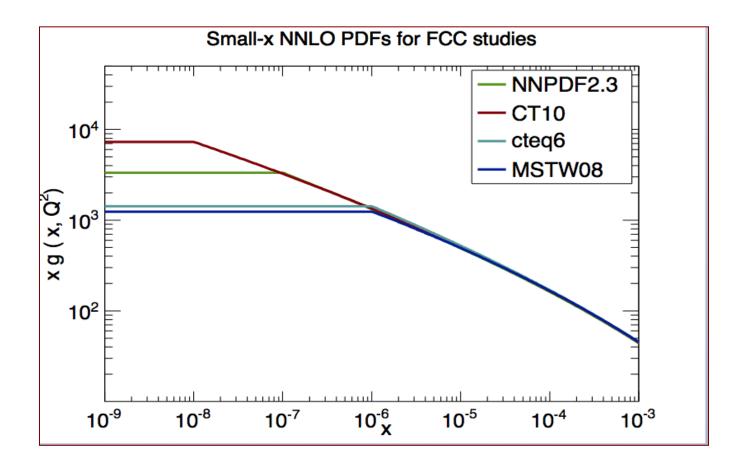
Processor clocking speeds and timing reference distribution not showstoppers Physics studies needed :


is 5ns worth it without lumi increase (eg back-to back jet tagging for VBF)?
what happens at 5 times lumi benchmark? (even if presently unrealistic)
comparison of different trigger approaches, L1 1MHz, ÷ 10, or triggerless
effect of low momentum tracks looping for several bunch crossings
performance of existing calorimeters vs new technology (eg Si sampling)

+ Radiation simulations needed to provide input on backgrounds

Parton Distributions at a 100 TeV Hadron Collider


Juan Rojo CERN, PH Division, TH Unit


How well are PDF known in the x range to be explored by such a machine ? Can we extrapolate from present measurements ? What PDF sets behave well in the new regime ?

Much larger x range (smaller values, down to 10⁻⁸)
 Current PDF sets have ~ no constraints below 10⁻⁴ or for M ≫ 1 TeV → need QCD evolution (DGLAP equations) to extrapolate (while waiting for more LHC data ..)

* At 10 TeV, the top quark PDF **t(x,Q)** is only a **factor 2 smaller that all other quark PDFs** (charm and bottom are very close to light quark PDFs): should be included in theoretical predictions

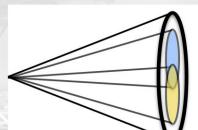
Some PDF "frozen" below $10^{-6} \rightarrow$ not a fundamental problem \rightarrow A group of people will provide a set of PDF for FHC-hh studies

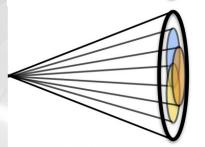
Summary and Outlook

Parton Distributions play a central role at the LHC program, will continue to do so at a **Future Circular Collider at 100 TeV**

Many new **qualitative features of PDFs** need to be studied: **top PDF**, PDFs at very large-x, **PDFs with electroweak corrections**, **PDFs with high-energy resummation**

FIT will be useful to provide specific PDF sets for FCC studies, with suitable extrapolations at very small and very large-x as well as to a very large Q² (and include top PDF)


A polarized mode of the FCC might provide a unique way of characterizing BSM dynamics uncovered in unpolarized collisions


reconstruction with jet substructure at a 100 TeV Collider

Maurizio Pierini CERN

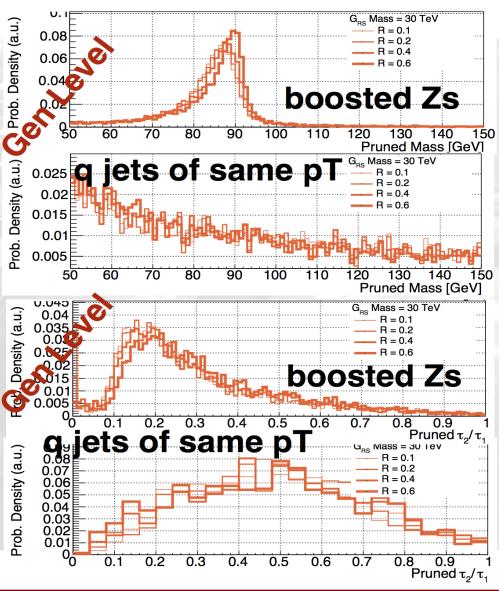
The Idea

- At large boost, quarks from W/Z/H/top merge into one jet
- The jet has characteristic features to be distinguished from ordinary QCD jets
- An effective discrimination requires the capability of identifying the jet constituents with good momentum/energy and angular resolution
- This could imply a constraint on the detector design (e.g. granularity of the calorimeters)
- In this talk, the case of a RS graviton decaying to ZZ or qq/gg is considered, to set a benchmark for future studies

 □ Capability of reconstructing jet sub-structures allows discrimination between QCD jets and jets coming from the decay of a boosted objects (W, Z, H, top)
 → need to resolve partons below ∆R <0.05

3

□ Detector granularity and resolution may allow discrimination between W and Z (top and H are easier ...) à la LC \rightarrow important e.g. for V_LV_L scattering


Discrimination Handles@100 TeV

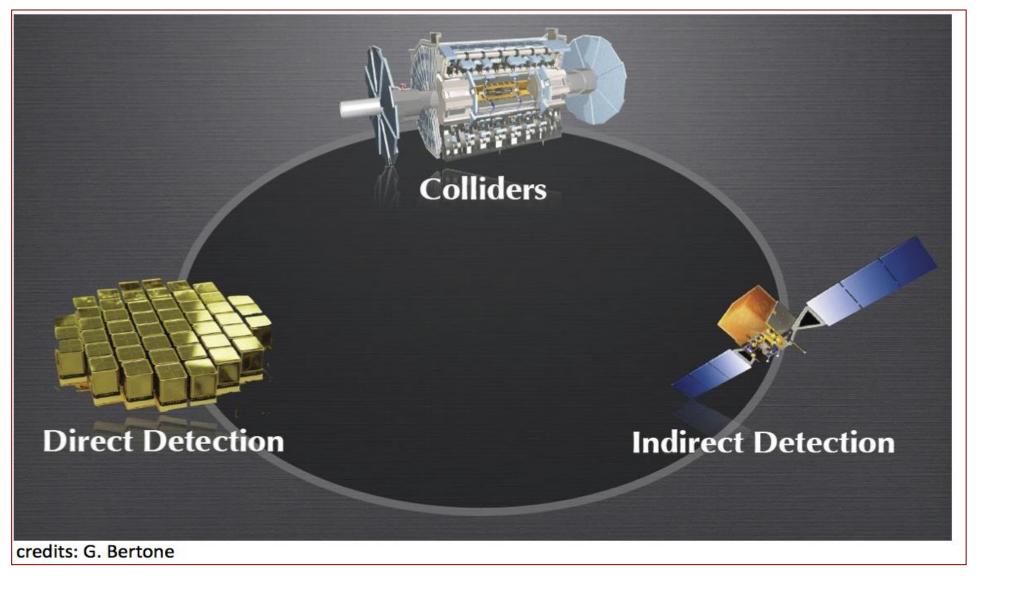
The (pruned) Jet Mass

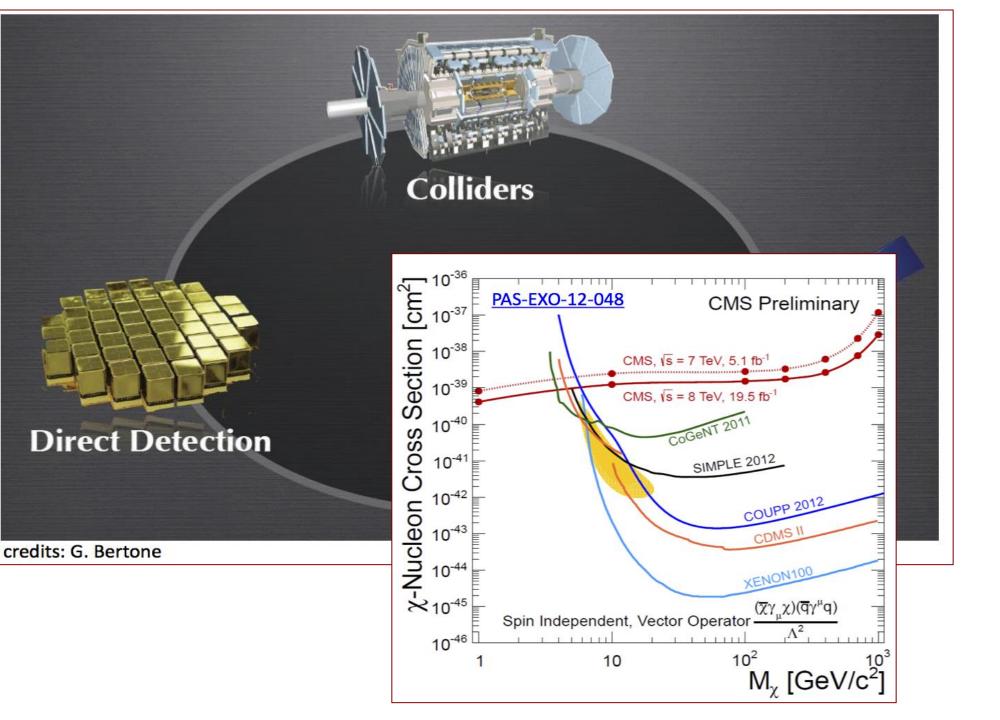
- jet mass computed after removing soft radiation (jet grooming)
- Works better than ordinary mass (which does not peak at 0 for bkg)

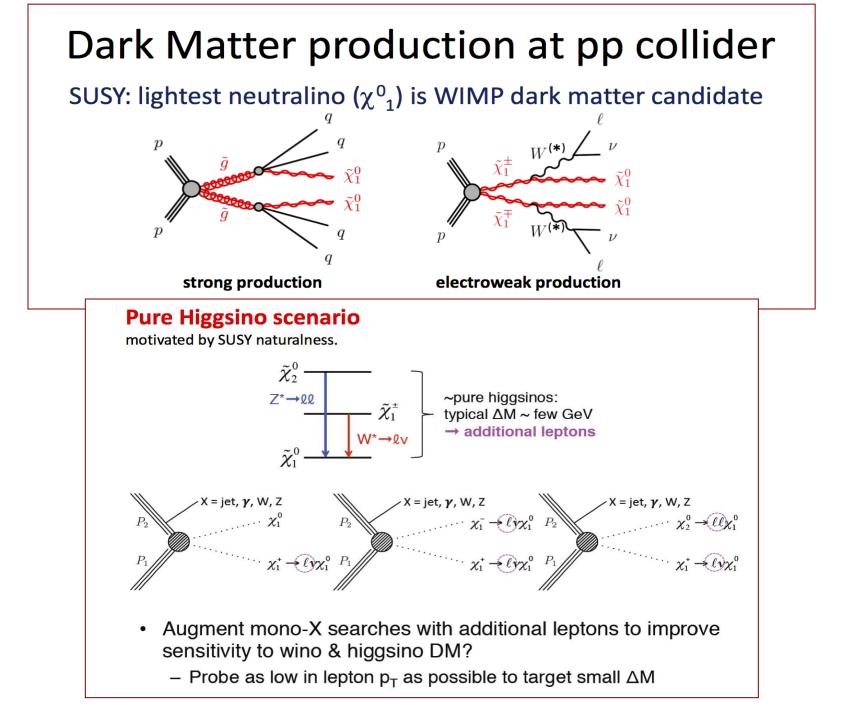
The jet substructure

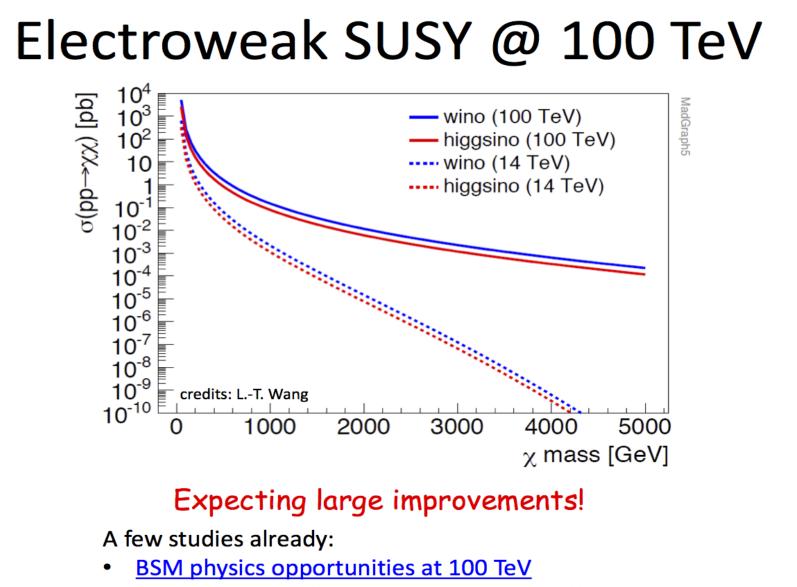
- Discriminate jets according to the distribution of its constituents around jet axis
- Several variables proposed. Here N-subjettiness used (as in CMS)

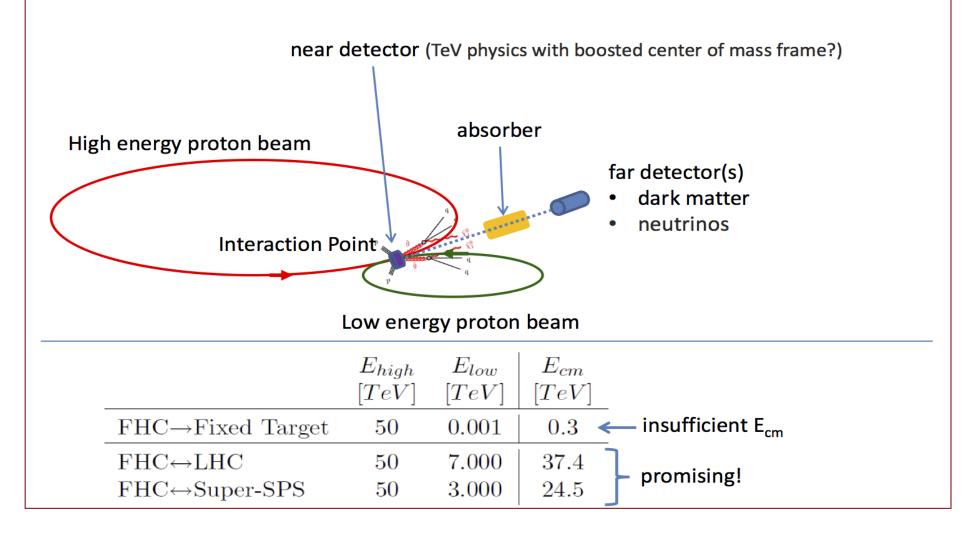
Conclusions

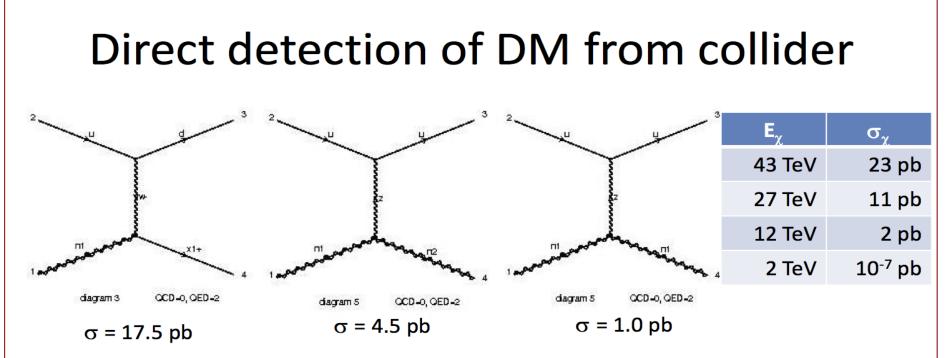

- Boosted W/Z/H reconstruction with jet substructure provides a good physics case to study the performances of a detector design
- This is a new topic, which comes with new needs (and new implications on the detector)
- A good jet energy resolution is still fundamental
- In addition, a good subject reconstruction points to the need of good angular resolution (particularly in the tracker) for a good jet mass resolution (main ingredient in commonly used taggers)
- Substructure information with only tracks shows good performances (so far), which makes life easier
- NEXT: evaluate the added value of high granularity in ECAL, and eventually in HCAL
- NEXT: evaluate the impact of the PU on the discrimination


Dark Matter at a Future Hadron Collider


David Côté (UTA), Ben Hooberman (FNAL), Filip Moortgat (CERN)


Future Circular Collider Study Kickoff Meeting





LPC meeting on future 100 TeV proton collider

DM Beam from Asymmetric Collider

pMSSM model #9515 at 43 TeV (FHC↔LHC), see 1307.8444 and backup.

Inelastic parton interaction: jet, W^(*)+j, Z^(*)+j signatures!

- dramatic cross-section increase w.r.t. nucleus recoil
 - strong energy dependence
- completely different detector design
 - look for jets + leptons instead of nucleus recoil

Dark Matter Detector @ FHC

- Assume that dark matter (DM) is produced by the future collider, study the possibility of adding a new type of detector to perform a direct observation of DM interaction with ordinary matter
 - controlled DM production <u>and</u> detection under laboratory conditions!
 - unique un-ambiguous identification of dark matter
 - direct detection from space: don't know the origin of the observed signal
 - E_T^{miss} signature: don't know the nature of the un-detected particle(s)
 - if successful, such a detector would allow:
 - absolute measurement of dark matter interaction cross-section
 - possible measurement of dark matter mass from time-of-flight
 - possibly find scenarios where dark matter is invisible for ATLAS & CMS but visible through direct detection
 - bread & butter neutrino physics in the TeV regime
- Two possible experimental setups:
 - symmetric collider
 - asymmetric collider producing a dark matter beam

Looking forward

Investigate **different options** in all technical areas, **taking a broad view** Expressions of interest over next few months (keeping single forum for now?)

Joint work needed between FCC WBS categories :

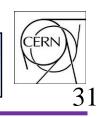
"Physics & Experiments" "Infra and Operations"

"Accelerators"

- □ Meeting page for FCC-hh
 - http://indico.cern.ch/category/5258/
- ☐ Mailing list:
- □ fcc-experiments-hadron@cern.ch

Engineering Design, integration and simulation resources will soon be needed. (possible synergies with HL-LHC coordination/ Project Office)

eg Radiation & magnetic field simulations


fluences (with self service interpolation for detector designers) estimations of dose rates and activation levels for various lumi & cooling times shielding design based on detector background & irradiation tolerances estimation of beam induced backgrounds

Magnetic field maps with detail extending to fringe field

Pile-up mitigation strategies eg wrt luminous region, bunch spacing etc. Then.... Working groups to be set up in close contact with e-h and e-e exploiting synergies and potential common application.

Possible evolution into hh detector WG's

- Initial break-out could be into somewhat coarser groups than those in the WBS eg....
- Magnet design
- Trigger DAQ, Controls & Computing
- Barrel-endcap: Tracking, Calorimetry, muon identification
- Forward: spectrometer and calorimetry.
- Safety, Supporting systems, Infrastructure & Interfaces:
- eventually expanding into a revised full WBS, eg Safety, Supporting systems, Infrastructure & Interfaces:
 - safety and detector protection radiation simulations, fluences, shielding, dose rates, activation caverns and surface facilities detector construction, maintenance procedures & dose minimisation interfaces to Accelerator, including
 - LSS beamline, bunch structure & luminous region, beam monitors, pile-up mitigation
 - beampipe & vacuum system etc..