Lepton Collider Break-out Session

J. Wenninger

2/14/2014

Work units

Lepton collider

Functional machine design

Beam dynamics and collective effects

Collimation concepts

Injection and extraction concepts and designs

Interaction region and final focus design

Booster ring conceptual design and integration

Lattice design and single particle dynamics

Polarization and energy calibration

Machine detector interface

Machine protection concepts

Radiation effects

Technical systems

Beam diagnostics requirements and conceptual design

Beam transfer elements requirements and conceptual design

Collimation systems and absorber requirements and conceptual design

Dump and stopper requirements and conceptual design

Element support and alignment requirements and conceptual design

Machine detector integration

Machine protection system requirements and conceptual design

Normal magnet requirements and element conceptual design

Power converter requirements and conceptual design

Quench protection and stored energy management requirements and concepts

RF system requirements and conceptual design

Superconducting magnet and cryostat requirements and conceptual design

Proximity cryogenics for RF and magnets

Vacuum system requirements and conceptual design

Shielding

J. Wenninger

M. Jimenez

⇔ hadron machine

Machine design

Functional machine design

Beam dynamics and collective effects

Collimation concepts

CERN BT group? Injection and extraction concepts and designs

Interaction region and final focus design R. Tomas

Booster ring conceptual design and integration Lattice design and single particle dynamics

B. Holzer

Polarization and energy calibration

Machine detector interface

H. Burkhardt, M. Boscolo

Machine protection concepts

Radiation effects

FLUKA team

- □ Not all of the proposed Work Units currently have a 'responsible'.
 - 'Inherited' from TLEP study.
- □ Various colleagues (in-/outside CERN) are (have been) contributing to the various subjects.

CERN

Injector

Lepton injectors

Overall design parameters

Baseline layout

Baseline parameters

Functional machine design

LEP chain performance and gaps

LEP chain compatibility with hadron injectors

New injector chain baseline

Technical systems

Low energy beam transfer lines

LIL/EPA re-installation feasibility

Existing injectors to be decommissioned for lepton operation

Technologies that require R&D

SuperKEKB-type injector option

CTF3 option usability

Planned LHeC test facility usability

Electron and positron sources

It is all in the hands of Yannis Papaphilippou!

International collaboration process in 2014

Proposal for next steps:

- Suggestions and comments from international community and discussion on study contents, organisation and resources
- Invitation of non-committing expressions of interest for contributions from worldwide institutes by end May 2014
- Prepare for formation of International Collaboration Board (ICB);
 proposed date first meeting 9-11 September 2014, to start FCC study

Process can be moderated by preparation group (possibly extended – following EOI) until global collaboration is formed and an international team is put in place to conduct the further study

Process remains open, further joining possible ...

2/14/2014

- □ For expression of interest (EI) for collaboration, I suggest that you contact the WU responsible:
 - Optics and IR: B. Holzer & R. Tomas
 - Machine-experiment interface: H. Burkardt, M. Boscolo
 - Polarization, beam dynamics, booster: J. Wenninger
 - Injector chain: Y. Papaphilippou
- We will collect those Els and forward them to M. Benedict et al.
- Based on the proposals, we will also propose names for WU holders to fill the empty slots.

Optics / Lattice

- □ A lot of activity is currently taking place on the optics (arc and IR) around B. Holzer and R. Tomas.
 - Provide the required emittances,
 - $_{\circ}$ Design a very low β^{*} IR with large energy acceptance,
 - IR layout (crossing...).
- We have to converge towards a first baseline machine model to serve as input to all the other work:
 - Realistic V emittances (errors !),
 - Polarization,.
 - Machine detector interface,
 - Synchrotron radiation issues,
 - Beam-beam studies.

CERN

Parameter table (1)

	LEP1	LEP2	Z	W	Н	tt
Circumference [km]	26.7		100			
Bending radius [km]	3.1		11			
Beam energy [GeV]	45.4	104	45.5	80	120	175
Beam current [mA]	2.6	3.04	1450	152	30	6.6
Bunches / beam	12	4	16700	4490	1360	98
Bunch population [10 ¹¹]	1.8	4.2	1.8	0.7	0.46	1.4
Transverse emittance e - Horizontal [nm] - Vertical [pm]	20 400	22 250	29.2 60	3.3 7	0.94 1.9	2 2
Momentum comp. [10 ⁻⁵]	18.6	14	18	2	0.5	0.5
Betatron function at IP b* - Horizontal [m] - Vertical [mm]	2 50	1.2 50	0.5 1	0.5 1	0.5 1	1 1
Beam size at IP s* [mm] - Horizontal - Vertical	224 4.5	182 3.2	121 0.25	26 0.13	22 0.044	45 0.045
Energy spread [%] - Synchrotron radiation - Total (including BS)	0.07 0.07	0.16 0.16	0.04 0.06	0.07 0.09	0.10 0.14	0.14 0.19
Bunch length [mm] - Synchrotron radiation - Total	8.6 8.6	11.5 11.5	1.64 2.56	1.01 1.49	0.81 1.17	1.16 1.49

Parameter table (2)

	LEP1	LEP2	Z	W	Н	tt	
Energy loss / turn [GeV]	0.12	3.34	0.03	0.33	1.67	7.55	
SR power / beam [MW]	0.3	11	50				
Total RF voltage [GV]	0.24	3.5	2.5	4	5.5	11	
RF frequency [MHz]	352		800				
Longitudinal damping time t _E [turns]	371	31	1320	243	72	23	
Energy acceptance RF [%]	1.7	0.8	2.7	7.2	11.2	7.1	
Synchrotron tune Q _s	0.065	0.083	0.65	0.21	0.096	0.10	
Polarization time t _p [min]	252	4	11200	672	89	13	
Hourglass factor H	1	1	0.64	0.77	0.83	0.78	
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	0.002	0.012	28.0	12.0	6.0	1.8	
Beam-beam parameter - Horizontal - Vertical	0.044 0.044	0.040 0.060	0.031 0.030	0.060 0.059	0.093 0.093	0.092 0.092	
Luminosity lifetime [min] ⁽²⁾	1250	310	213	52	21	15	
Beamstrahlung critical	No		No	No	Yes	Yes	