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What we are doing

We study higher-dimensional gauge plus gravity theory and its
application to inflationary cosmology.

In our model, two scalar fields, gauge-scalar 8 and radion ¢, are
obtained from the five dimensional gravity field and the five
dimensional gauge field with the S compactification.

We investigate the stability of the one-loop effective potential for
0 and ¢. As the potential V' (0, ¢) can be identified with the
inflaton potential, we have to check if V' (0, ¢) satisfies all
constraints for inflation.
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I . Introduction



Why inflation?

The Hot Big-Bang scenario has explained how our universe was
made.

But the Hot Big-Bang scenario has a few problems.
- Flatness problem
- Horizon problem
- monopole problem etc.

If inflation occurred before the Hot Big-Bang,
these problems are solved.



What is inflation?

Inflation is the rapidly accelerated expansion of space at the early
stage of the universe.

a(t) ~ eflt (H=g)

a : scale factor

Inflation occurs if the universe is filled with a scalar field ¢.
inflaton

We need to take the inflaton potential V(@) into consideration.
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Constraints for inflation

I\ 2 7
slow-roll conditions ¢ = %MI% (%) <1, [n]= 7 <1
spectral index ng=1—06e+2n, 0.948 <ng <0.977

1 vV
number of e-folding N = / Hdt ~ — —d¢| ~ 50 ~ 60
ME | ), V
curvature perturbation P = 1 (V(¢)>2 _(49402) x 105
2\/67TM123 €

(x: at the horizon exit)

Quantum gravity correction is negligible.

tensor to scalar ratio P

(restriction for the energy scale where inflation occurs)



Higher-dimensional theory

Higher-dimensional fields unify some 4D fields.
* 5D gauge field includes 4D gauge fields and 4D scalar fields.

* 5D gravity field includes 4D gravity fields, 4D U(1) gauge fields
and 4D scalar fields.

Higher-dimensional theory can be regarded as 4D theory after
compactification.

We concentrate on the extra space scalar components of higher-
dimensional fields By, and gy -



S 1 compactification

¥

5D theory Effective 4D theory
5D gauge field 4D gauge field
B, B,
5 () b1
BM (xM)= gz Bﬂ (XM)= gz
3

4D scalar field
BS(n) (xx,,) : gauge-scalar

(n:integer n = —co~)

Can the zero mode of gauge-scalar BS(O) be identified with inflaton?
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Extranatural Inflation (Arkani-Hamed et al. ‘03)
5D-action (SU(N)gauge + matter)

Ss = d°x [_%tr(FMNFMN) + Y (iyMDy — ,u)l/J]
Fyn =0yBy — OyBy + i A5[By, By

(Az: 5D gauge coupling constant )
The one-loop effective potential is finite and periodic.

4 ( ¢ ) (GeV)4 Inflation
“ - %
Y : J Chaotic inflation model
Y - J
% 64 o .
10 Y, < One-loop potential
¢ (GeV)
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5D-metric can be parametrized as
4D scalar field

g\ — ¢—§ (guv + A[,LAVg55 Au,¢
MN A, ¢ (¢) $™(x,) : radion

S compactification
(Appelquist & Chodos ‘83)

Can the zero mode of radion ¢(°) be identified with inflaton as well
as gauge-scalar?
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Radion Inflation (Inami et al. “12)
5D-action (gravity + matter)

Ss = [ d>x \/detgap [R + Y (iyM Dy — ]
(R : scalar curvature, u : matter mass)

The one-loop effective potential is finite.

V(®)(GeV)*
A Constraint for inflation
g <<l
5x10%f
n<<1
0.948<n <0.977
N =50~60
10% I 5y =1.91%1075

L —> 0 (GeV
10% 5x10 10" b (Gev)
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Our Motivation

How about the model which includes both gauge-scalar and
radion?

5D-gauge field  + 5D-gravity field

¥

inflation

f?




II . The one-loop effective potential



Model

5D-action (Gravity + U(1)-Gauge + Matter)
S5= f de\/_ det gmn [['Gravity + ['Gauge + LMatte'r]

) A 1 g,uv + A,uAVgSS A,u¢)
5D-metric =¢ 3 (
Jgun = @ A, b
1 ~

['Gravity — FGSR(S) (ﬁ(s) : 5D Ricci scalar)
1 AMP ~
Lcauge = _ZQMPQNLFMNFPL Fun = OmBN — OnBy

Lyatter = Pi(—igMN Dy — m)¥; Dy = 0y — igsBy
(m: mass of charged fermions) (gs: 5D gauge coupling const.)
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Kaluza-Klein expansions

1 2T
Bs (x,,y) = <BS(O)> + EZBS(n)(xM)el LY

N=—00

B, y) = (6 @)+ ¢ P )e’ L

N=—o00
We define

g/4L<B§O)>

2’ ¢ E<¢ (O)>

where g', is the 4D gauge coupling constant and L is the
compactification circumference.

0 =
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One-loop diagram

Gravity loop term

o ¢ o ¢ 6% ¢ ? o ¢
o P, @0 # e L e
Yo £ ie . we S e 46
N=—0o0 %QQOVO/Q&/ ’ 4 L \-///
hf[,i) an) Ag”) (1) ¢(n)
Gauge loop term Matter loop term
o P R N o
Z ¢i:?+¢‘ +¢———\/ \1 Z (HP::G
R 0 e I 40
B,u C( ) B5 ¢ AAAAA *s
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One-loop effective potential

V(e» ¢) — VGravity (¢) + VGauge (¢) + VMatter (0» ¢)

15 1 9 1
— _47_[2 ¢ 2L4 ((5) _ 4772 ¢ 2L4 ((5)
1 1
+§¢ 24 Re[c;L;. (e” Lmep3 le)+C1Lm¢3L (e” Lmep3 le)

1

2 - .
+Cq % L*m?¢sL;, (e tmP3el?)]

Cq: number of charged fermions 2©
0 = gl4L< > ¢ _ <¢ (O))
{(n) = ), —:zetafunction = om =
k=1
© .k
Lin(x) = ;C—n polylogarithm function
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Approximation of the potential for some values of ¢p and @

* 1(0, ¢) goes to zero at large value of ¢

L; (e_Lm‘l’g)~e_L"“"’g -0
= V(0,¢) = —=7[-8((5)] >0 (¢~ 0)

* V(0,¢) at small ¢
V(o,¢) =

8¢(5) + 4c; L (') — - clec,bBng (e'f) —

. clLZmqusLiz ()]

41 2¢ L4[

Note that the sign of the matter contribution is positive or negative
depending on the value of 8 while the graviton and gauge boson

contributions are always negative sign(attractive).
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3D-Graph

Gauge-scalar 8 contribution makes the potential unstable.
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0 # 1 case

0 = 1 case

%

O-dependence

5% 1022

—5x%10°2

—1x10%3

0

6 21 021

-20x10%
-40x10%
-60 % 10%
~8.0x10%
~10x10%°

~12x10%®

2 %1020 4 6 x 10°0 8 x 1020 1x10%!
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Adding the neutral fermions

But inflation needs a stable minimum in scalar potential for reheating.

The charged fermions are coupled with gauge-scalar 0. That is why
gauge-scalar @ contribution makes the potential unstable.

We believe that adding the contribution caused by
neutral fermions is a good way to obtain stable
potential.
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Modified potential

V(B: ¢) — VGravity (¢) + VGauge (¢) + VMatter (9: ¢)

15 1 9 1
_ 4772 ¢ 2L4 ((5) _ 4772 ¢ 2L4. ((5)
1

1
— 1 —
—Re[c,Li (e L4 ) wc, LudpLy, (e~ 149°)

3
+§¢2L4

1
+y L L2 psLy (719
1 1 1
+c1Li (e M e®)hc LmesL;, (e Lm0 e!?)
1 2 3
+0p 3 L*m?¢sL;, (e tmP3elf)]

C, : number of neutral fermions
u : mass of neutral fermions
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Approximation of the potential for some values of ¢p and @

* V(0,¢) goes to zero at large value of ¢

L; (e‘L'”“"’E)Ne‘Lm“”§ -0
= V(0,¢) = —=[-8¢(5)] >0 (¢~ 0)

* V(0,¢) at small ¢
V(o,¢)

3 8
=13 ¢ 7,5 18+ 4c2}4(5) — —CzLuflJB( (3
— §C2L2#2¢3((2) +4c,L;i(e') — gcleqb?Li3 (etf)
— éclLZranb%Liz (e9)]

3
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O-dependence

0 # 1 case

5% 1022

22

-5x10%%

-1x105 |

O = 1 case

15x%10%
10x10%

50 %1023

021

¢

V 0
~50x10%3

~10x10%

4% 1020 6x 1020 8 x 1020 1x 102!

1020
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3D-Graph

Neutral fermions is not coupled with gauge-scalar 8 and contribute as
the repulsive potential.

We achieve a stable minimum in the potential when ¢, = 2 + ¢;.
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IIT. Conclusion



Conclusion

* We calculate the one-loop effective potential which is
dominated by both radion ¢ and gauge-scalar 0.

* The stable effective potential can be obtained by the 5D U(1)
gauge plus the 5D gravity theory.

* Both gravity and gauge loops are attractive. The charged
fermions contribution can become repulsive or attractive
depending on the value of gauge-scalar 8. We need to add
the neutral fermions to achieve a stable minimum in the
effective potential V (0, ¢) for all values of gauge-scalar 8.



IV . Discussion



Discussion

We have to check if V (0, ¢) satisfies all constraints for inflation
and the possibility of hybrid inflation model. (work in progress)

We progress in the non-abelian gauge theory. We investigate
the 5D SU(2) gauge plus the 5D gravity theory. How effects is
given by the self-interaction of the 5D gauge field?

(work in progress) o
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Thank you for your kind attention.



0 0

the compactification circumference L = 3 X 10717 Gev™1
the number of the charged fermionsc; = 6

the mass of the charged fermionsm = 1 x 10'° Gev

the number of the neutral fermions ¢, = 3

the mass of the neutral fermions 4 = 1 x 101? Gev
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