Inflation from Higher-Dimensional Gauge and Gravity Theory

Yugo Abe Shinshu University PASCOS2013 (21th, November, 2013)

In collaboration with

Y. Kawamura(Shinshu U), T.Inami(Chuo U) and Y. Koyama(National Tsing Hua University)

What we are doing

We study higher-dimensional gauge plus gravity theory and its application to inflationary cosmology.

In our model, two scalar fields, gauge-scalar θ and radion ϕ , are obtained from the five dimensional gravity field and the five dimensional gauge field with the S^1 compactification.

We investigate the stability of the one-loop effective potential for $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$. As the potential $V(\boldsymbol{\theta}, \boldsymbol{\phi})$ can be identified with the inflaton potential, we have to check if $V(\boldsymbol{\theta}, \boldsymbol{\phi})$ satisfies all constraints for inflation.

Contents

I . Introduction

 ${\rm I\!I}$. The one-loop effective potential

III. Conclusion

IV. Discussion

Contents

I . Introduction

${\rm I\!I}$. The one-loop effective potential

II. Conclusion

IV. Discussion

Why inflation?

The Hot Big-Bang scenario has explained how our universe was made.

But the Hot Big-Bang scenario has a few problems.

- Flatness problem
- Horizon problem
- monopole problem etc.

If inflation occurred before the Hot Big-Bang, these problems are solved.

What is inflation?

Inflation is the rapidly accelerated expansion of space at the early stage of the universe.

$$a(t) \sim e^{Ht}$$
 ($H = \frac{a}{a}$)
 $a: scale factor$

Inflation occurs if the universe is filled with a scalar field φ . inflaton

We need to take the inflaton potential $V(\varphi)$ into consideration.

Constraints for inflation

- **1)** slow-roll conditions $\epsilon \equiv \frac{1}{2}M_P^2 \left(\frac{V'}{V}\right)^2 \ll 1, \quad |\eta| \equiv M_P^2 \left|\frac{V''}{V}\right| \ll 1$
- 2) spectral index $n_s \equiv 1 6\epsilon + 2\eta$, $0.948 \le n_s \le 0.977$
- 3) number of e-folding $N \equiv \int_{t_i}^{t_f} H dt \simeq \frac{1}{M_P^2} \left| \int_{\phi_i}^{\phi_f} \frac{V}{V'} d\phi \right| \simeq 50 \sim 60$

4) curvature perturbation $\mathcal{P}_{\zeta}^{\frac{1}{2}} = \frac{1}{2\sqrt{6}\pi M_P^2} \left(\frac{V(\phi)}{\epsilon}\right)^{\frac{1}{2}} \bigg|_* = (4.9 \pm 0.2) \times 10^{-5}$

(*: at the horizon exit)

- 5) Quantum gravity correction is negligible.
- 6) tensor to scalar ratio $r = \frac{P_h}{P_{\zeta}} = 16\epsilon$ (restriction for the energy scale where inflation occurs) 7

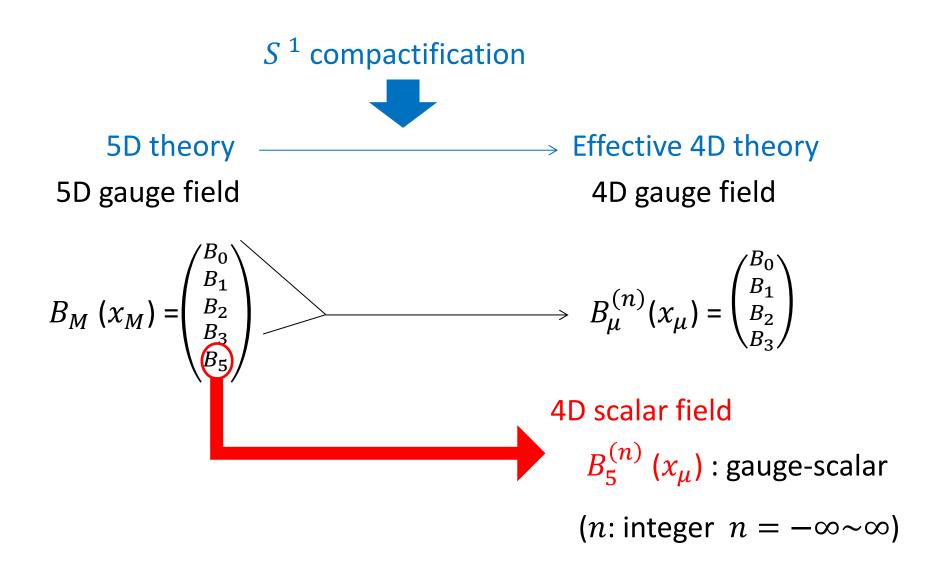
Higher-dimensional theory

Higher-dimensional fields unify some 4D fields.

- 5D gauge field includes 4D gauge fields and 4D scalar fields.
- 5D gravity field includes 4D gravity fields, 4D U(1) gauge fields and 4D scalar fields.

Higher-dimensional theory can be regarded as 4D theory after compactification.

We concentrate on the extra space scalar components of higherdimensional fields B_M and \hat{g}_{MN} .



Can the zero mode of gauge-scalar $B_5^{(0)}$ be identified with inflaton?

Extranatural Inflation (Arkani-Hamed et al. '03)

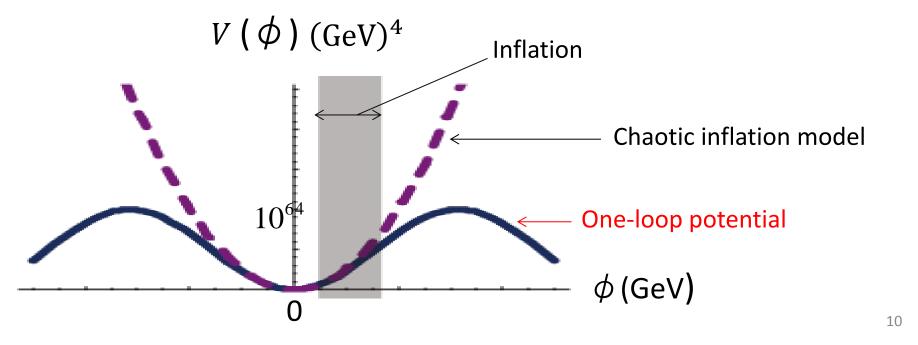
5D-action (SU(N)gauge + matter)

$$S_{5} = \int d^{5}x \left[-\frac{1}{2} \operatorname{tr}(F^{MN}F_{MN}) + \overline{\psi}(i\gamma^{M}D_{M} - \mu)\psi \right]$$

$$F_{MN} = \partial_{M}B_{N} - \partial_{N}B_{M} + i\lambda_{5}[B_{M}, B_{N}]$$

$$(\lambda_{5}: 5D \text{ gauge coupling constant })$$

The one-loop effective potential is finite and periodic.



5D-metric can be parametrized as

$$\hat{g}_{MN} = \phi^{-\frac{1}{3}} \begin{pmatrix} g_{\mu\nu} + A_{\mu}A_{\nu}g_{55} & A_{\mu}\phi \\ A_{\nu}\phi & \phi \end{pmatrix} \xrightarrow{\text{4D scalar field}} \phi^{(n)}(x_{\mu}) : \text{radion}$$

$$S^{1} \text{ compactification}$$
(Appelquist & Chodos '83)

Can the zero mode of radion $\phi^{(0)}$ be identified with inflaton as well as gauge-scalar?

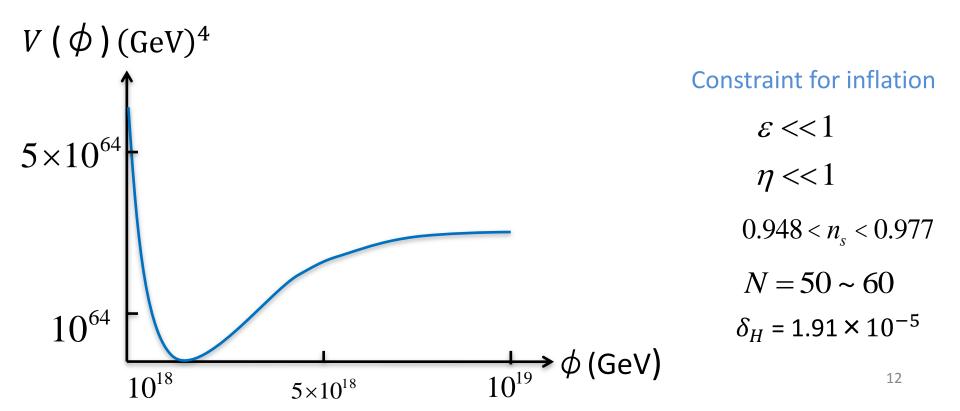
Radion Inflation (Inami et al. '12)

5D-action (gravity + matter)

$$S_5 = \int d^5 x \sqrt{\det g_{AB}} \left[R + \overline{\psi} (i \gamma^M D_M - \mu) \psi \right]$$

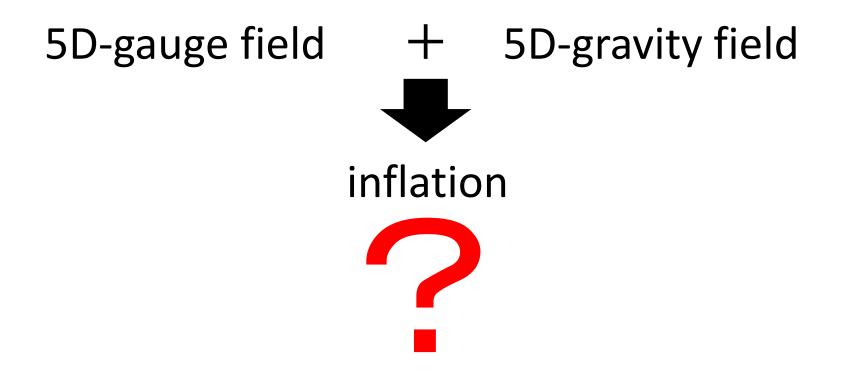
(R : scalar curvature, μ : matter mass)

The one-loop effective potential is finite.



Our Motivation

How about the model which includes both gauge-scalar and radion?



Contents

I . Introduction

${\rm I\!I}$. The one-loop effective potential

II. Conclusion

IV. Discussion

Model

5D-action (Gravity + U(1)-Gauge + Matter) $S_5 = \int d^5 x \sqrt{-\det \hat{g}_{MN}} \left[\mathcal{L}_{Gravity} + \mathcal{L}_{Gauge} + \mathcal{L}_{Matter} \right]$

5D-metric
$$\hat{g}_{MN} = \boldsymbol{\phi}^{-\frac{1}{3}} \begin{pmatrix} g_{\mu\nu} + A_{\mu}A_{\nu}g_{55} & A_{\mu}\boldsymbol{\phi} \\ A_{\nu}\boldsymbol{\phi} & \boldsymbol{\phi} \end{pmatrix}$$

$$\mathcal{L}_{Gravity} = \frac{1}{16\pi G_5} \hat{R}_{(5)} \quad (\hat{R}_{(5)} : 5D \text{ Ricci scalar})$$

$$\mathcal{L}_{Gauge} = -\frac{1}{4}\hat{g}^{\mathrm{MP}}\hat{g}^{\mathrm{NL}}F_{\mathrm{MN}}F_{\mathrm{PL}} \qquad F_{\mathrm{MN}} = \partial_{\mathrm{M}}B_{\mathrm{N}} - \partial_{\mathrm{N}}B_{M}$$

$$\mathcal{L}_{Matter} = \overline{\Psi}_i \Big(-i \hat{g}^{MN} \Gamma_M D_N - m \Big) \Psi_i \qquad D_N = \partial_N - i g'_5 B_N$$

(*m*: mass of charged fermions) $(g'_5: 5D \text{ gauge coupling const.}$

Kaluza-Klein expansions

$$B_5(x_{\mu}, y) = \left\langle B_5^{(0)} \right\rangle + \frac{1}{\sqrt{L}} \sum_{n = -\infty}^{\infty} B_5^{(n)}(x_{\mu}) e^{i\frac{2\pi n}{L}y}$$

$$\boldsymbol{\phi}(x_{\mu},y) = \left\langle \boldsymbol{\phi}^{(0)} \right\rangle + \sum_{n=-\infty}^{\infty} \boldsymbol{\phi}^{(n)}(x_{\mu}) e^{i\frac{2\pi n}{L}y}$$

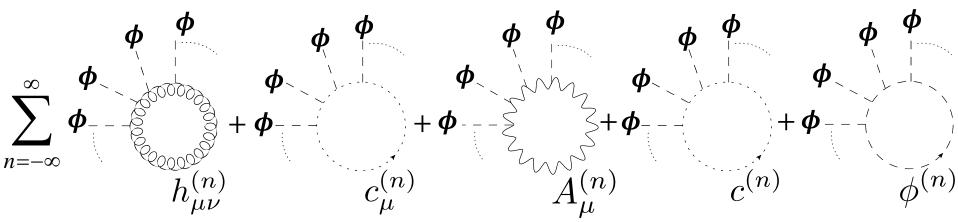
We define

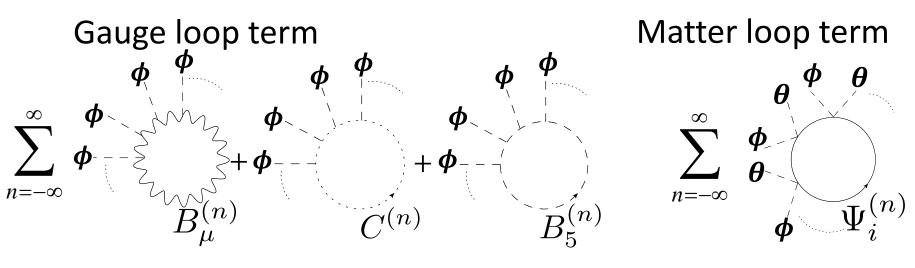
$$\boldsymbol{ heta} \equiv rac{g_{4}L\left\langle B_{5}^{\left(0
ight)}
ight
angle}{2\pi}$$
, $\boldsymbol{\phi} \equiv \left\langle \boldsymbol{\phi}^{\left(0
ight)}
ight
angle$

where g'_4 is the 4D gauge coupling constant and L is the compactification circumference.

One-loop diagram

Gravity loop term





One-loop effective potential

$$V(\boldsymbol{\theta}, \boldsymbol{\phi}) = V_{Gravity}(\boldsymbol{\phi}) + V_{Gauge}(\boldsymbol{\phi}) + V_{Matter}(\boldsymbol{\theta}, \boldsymbol{\phi})$$

$$= -\frac{15}{4\pi^2} \frac{1}{\phi^2 L^4} \zeta(5) - \frac{9}{4\pi^2} \frac{1}{\phi^2 L^4} \zeta(5) + \frac{3}{\pi^2} \frac{1}{\phi^2 L^4} \operatorname{Re}[c_1 L_{i_5}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta}) + c_1 Lm\phi^{\frac{1}{3}}L_{i_4}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta}) + c_1 \frac{1}{3} L^2 m^2 \phi^{\frac{2}{3}}L_{i_3}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta})]$$

$$c_1$$
 : number of charged fermions
 $\boldsymbol{\zeta}(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}$: zeta function
 $\boldsymbol{L}_{\boldsymbol{i_n}}(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^n}$: polylogarithm function

$$\boldsymbol{\theta} \equiv \frac{g_{4}L\left\langle B_{5}^{(0)}\right\rangle}{2\pi}, \quad \boldsymbol{\phi} \equiv \left\langle \boldsymbol{\phi}^{(0)}\right\rangle$$

Approximation of the potential for some values of $\boldsymbol{\phi}$ and $\boldsymbol{\theta}$

• $V(\boldsymbol{\theta}, \boldsymbol{\phi})$ goes to zero at large value of $\boldsymbol{\phi}$

$$L_{i_n}(e^{-Lm\phi^{\frac{1}{3}}}) \sim e^{-Lm\phi^{\frac{1}{3}}} \to 0$$

$$\therefore V(\theta, \phi) \approx \frac{1}{\phi^{2}L^{4}} [-8\zeta(5)] \to 0 \quad (\phi \to 0)$$

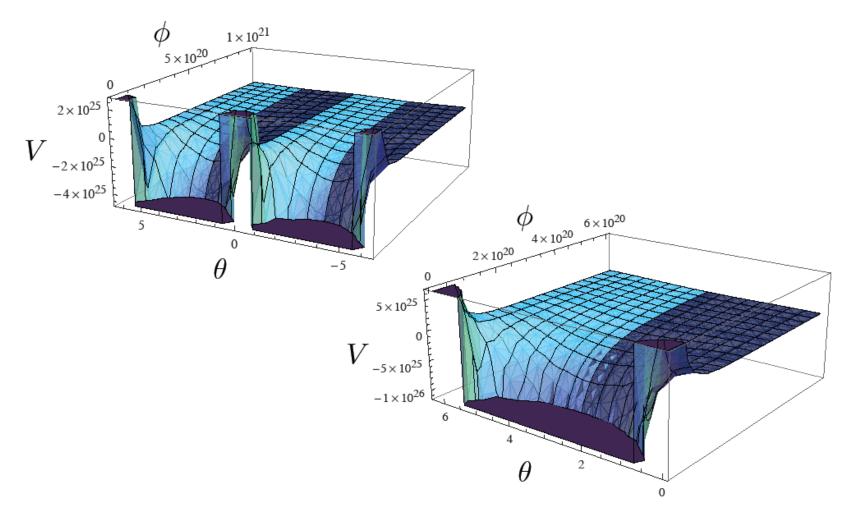
• $V(\boldsymbol{\theta}, \boldsymbol{\phi})$ at small $\boldsymbol{\phi}$

$$V(\theta, \phi) = \frac{3}{4\pi^2} \frac{1}{\phi^2 L^4} \left[-8\zeta(5) + 4c_1 L_{i_5}(e^{i\theta}) - \frac{8}{3}c_1 Lm \phi^{\frac{1}{3}} L_{i_3}(e^{i\theta}) - \frac{4}{3}c_1 L^2 m^2 \phi^{\frac{2}{3}} L_{i_2}(e^{i\theta}) \right]$$

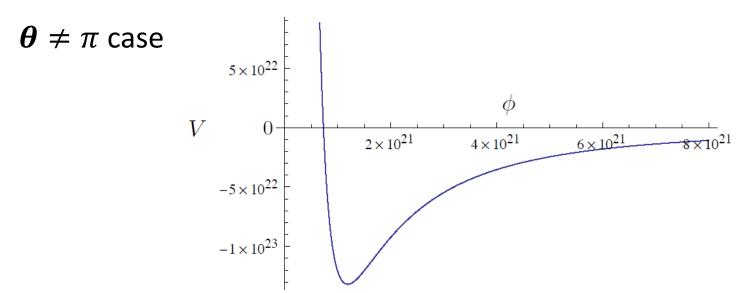
Note that the sign of the matter contribution is positive or negative depending on the value of θ while the graviton and gauge boson contributions are always negative sign(attractive).

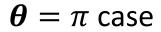
3D-Graph

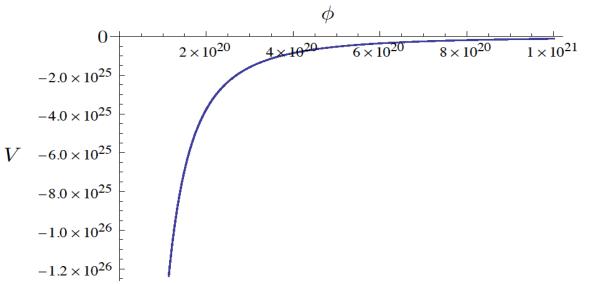
Gauge-scalar $\boldsymbol{\theta}$ contribution makes the potential unstable.



*\theta***-dependence**







Adding the neutral fermions

But inflation needs a stable minimum in scalar potential for reheating.

The charged fermions are coupled with gauge-scalar θ . That is why gauge-scalar θ contribution makes the potential unstable.

We believe that adding the contribution caused by neutral fermions is a good way to obtain stable potential.

Modified potential

$$V(\theta, \phi) = V_{Gravity}(\phi) + V_{Gauge}(\phi) + V_{Matter}(\theta, \phi)$$

= $-\frac{15}{4\pi^2} \frac{1}{\phi^2 L^4} \zeta(5) - \frac{9}{4\pi^2} \frac{1}{\phi^2 L^4} \zeta(5)$
+ $\frac{3}{\pi^2} \frac{1}{\phi^2 L^4} \operatorname{Re}[c_2 L_{i_5}(e^{-L\mu\phi^{\frac{1}{3}}}) + c_2 L\mu\phi^{\frac{1}{3}} L_{i_4}(e^{-L\mu\phi^{\frac{1}{3}}})$
+ $c_2 \frac{1}{3} L^2 \mu^2 \phi^{\frac{2}{3}} L_{i_3}(e^{-L\mu\phi^{\frac{1}{3}}})$
+ $c_1 L_{i_5}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta}) + c_1 Lm\phi^{\frac{1}{3}} L_{i_4}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta})$
+ $c_1 \frac{1}{3} L^2 m^2 \phi^{\frac{2}{3}} L_{i_3}(e^{-Lm\phi^{\frac{1}{3}}}e^{i\theta})]$

 c_2 : number of neutral fermions μ : mass of neutral fermions Approximation of the potential for some values of $\boldsymbol{\phi}$ and $\boldsymbol{\theta}$

• $V(\theta, \phi)$ goes to zero at large value of ϕ

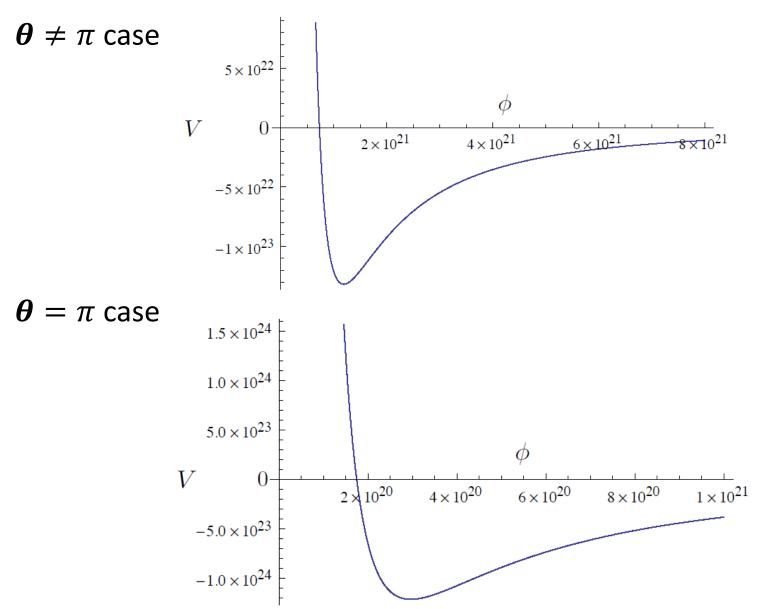
$$L_{i_n}(e^{-Lm\phi^{\frac{1}{3}}}) \sim e^{-Lm\phi^{\frac{1}{3}}} \to 0$$

$$\therefore V(\theta, \phi) \approx \frac{1}{\phi^{2}L^{4}} [-8\zeta(5)] \to 0 \quad (\phi \to 0)$$

• $V(\theta, \phi)$ at small ϕ $V(\theta, \phi)$

$$= \frac{3}{4\pi^{2}} \frac{1}{\phi^{2}L^{4}} [\{-8 + 4c_{2}\}\zeta(5) - \frac{8}{3}c_{2}L\mu\phi^{\frac{1}{3}}\zeta(3) - \frac{4}{3}c_{2}L^{2}\mu^{2}\phi^{\frac{2}{3}}\zeta(2) + 4c_{1}L_{i_{5}}(e^{i\theta}) - \frac{8}{3}c_{1}Lm\phi^{\frac{1}{3}}L_{i_{3}}(e^{i\theta}) - \frac{4}{3}c_{1}L^{2}m^{2}\phi^{\frac{2}{3}}L_{i_{2}}(e^{i\theta})]$$

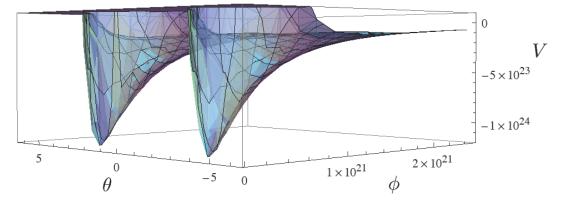
θ-dependence

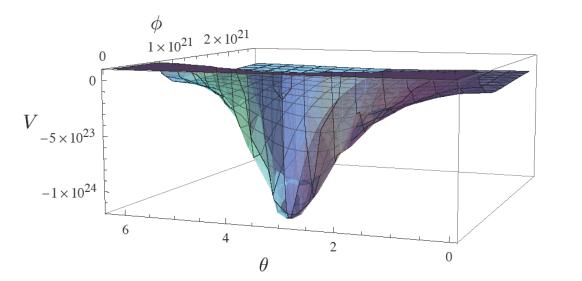


3D-Graph

Neutral fermions is not coupled with gauge-scalar θ and contribute as the repulsive potential.

We achieve a stable minimum in the potential when $c_2 \ge 2 + c_1$.





26

Contents

I . Introduction

II . The one-loop effective potential

III. Conclusion

IV. Discussion

Conclusion

- We calculate the one-loop effective potential which is dominated by both radion ϕ and gauge-scalar θ .
- The stable effective potential can be obtained by the 5D U(1) gauge plus the 5D gravity theory.
- Both gravity and gauge loops are attractive. The charged fermions contribution can become repulsive or attractive depending on the value of gauge-scalar $\boldsymbol{\theta}$. We need to add the neutral fermions to achieve a stable minimum in the effective potential $V(\boldsymbol{\theta}, \boldsymbol{\phi})$ for all values of gauge-scalar $\boldsymbol{\theta}$.

Contents

I . Introduction

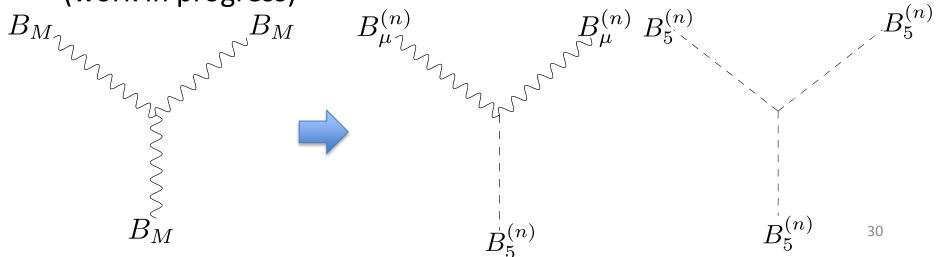
II . The one-loop effective potential

II. Conclusion

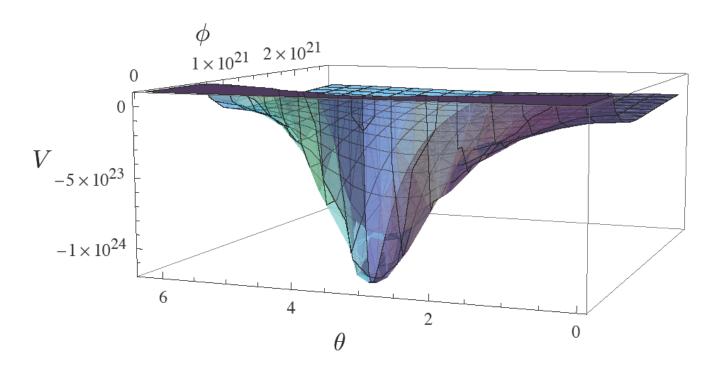
IV. Discussion

Discussion

- We have to check if $V(\theta, \phi)$ satisfies all constraints for inflation and the possibility of hybrid inflation model. (work in progress)
- We progress in the non-abelian gauge theory. We investigate the 5D SU(2) gauge plus the 5D gravity theory. How effects is given by the self-interaction of the 5D gauge field? (work in progress)



Thank you for your kind attention.



the compactification circumference $L = 3 \times 10^{-17} \text{ Gev}^{-1}$ the number of the charged fermions $c_1 = 6$ the mass of the charged fermions $m = 1 \times 10^{10} \text{ Gev}$ the number of the neutral fermions $c_2 = 3$ the mass of the neutral fermions $\mu = 1 \times 10^{10} \text{ Gev}$