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What we are doing 
  We study higher-dimensional gauge plus gravity theory and its 
application to inflationary cosmology. 

 

  In our model, two scalar fields, gauge-scalar 𝜽 and radion 𝝓, are 
obtained from the five dimensional gravity field and the five 
dimensional gauge field with the 𝑆1 compactification.  

 

  We investigate the stability of the one-loop effective potential for 
𝜽 and 𝝓. As the potential 𝑉 𝜽,𝝓  can be identified with the 
inflaton potential, we have to check if 𝑉 𝜽,𝝓  satisfies all 
constraints for inflation. 
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Why inflation? 
  The Hot Big-Bang scenario has explained how our universe was 
made. 

But the Hot Big-Bang scenario has a few problems. 

            - Flatness problem 

            - Horizon problem 

            - monopole problem   etc. 

 

 

If inflation occurred before the Hot Big-Bang,  

these problems are solved. 
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What is inflation? 
  Inflation is the rapidly accelerated expansion of space at the early 
stage of the universe. 

 

 

 

 

  Inflation occurs if the universe is filled with a scalar field 𝜑. 

 

 

 

  We need to take the inflaton potential 𝑉(𝜑) into consideration. 

 

 

𝑎(𝑡) ~ 𝑒𝐻𝑡                    (  𝐻 = 
𝑎 

𝑎
  )  

                                                                       𝑎 : scale factor 

 

inflaton 
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1) slow-roll conditions  

 
 

2) spectral index 

 

3) number of e-folding 

 

4) curvature perturbation 

 

 

5) Quantum gravity correction is negligible. 

 

6) tensor to scalar ratio 

 
(restriction for the energy scale where inflation occurs)  

Constraints for inflation 

(∗: at the horizon exit)  
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Higher-dimensional theory 
  Higher-dimensional fields unify some 4D fields. 

• 5D gauge field includes 4D gauge fields and 4D scalar fields. 

• 5D gravity field includes 4D gravity fields, 4D U(1) gauge fields 
and 4D scalar fields. 

 

  Higher-dimensional theory can be regarded as 4D theory after 
compactification. 

 

  We concentrate on the extra space scalar components of higher-
dimensional fields 𝐵𝑀 and 𝑔 MN. 
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                                𝑆 1 compactification         

 

          5D theory                                               Effective 4D theory 

   5D gauge field                                                 4D gauge field 

  𝐵𝑀 (𝑥𝑀) =

𝐵0
𝐵1
𝐵2
𝐵3
𝐵5

                                                𝐵𝜇
𝑛

(𝑥𝜇) = 

𝐵0
𝐵1
𝐵2
𝐵3

  

                                                                        4D scalar field     

                                                                             𝐵5
𝑛

 (𝑥𝜇) : gauge-scalar 

 

 

Can the zero mode of gauge-scalar  𝐵5
0

 be identified with inflaton? 

(𝑛: integer  𝑛 = −∞~∞)  
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Extranatural Inflation  (Arkani-Hamed et al. ‘03)  

   5D-action (SU(N)gauge + matter)  

     𝑆5 =   𝑑5𝑥 −
1

2
tr(𝐹𝑀𝑁𝐹𝑀𝑁) + 𝜓 𝑖𝛾𝑀𝐷𝑀 − 𝜇 𝜓   

       𝐹𝑀𝑁 = 𝜕𝑀𝐵𝑁 − 𝜕𝑁𝐵𝑀 + 𝑖 𝜆5[𝐵𝑀, 𝐵𝑁] 

  

The one-loop effective potential is finite and periodic. 

φ(GeV) 

𝑉  (φ) GeV 4 

0 

Inflation 

Chaotic inflation model 

One-loop potential 6410

(𝜆5: 5D gauge coupling constant )  
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5D-metric can be parametrized as  

  𝑔 MN = 𝝓−
1

3
𝑔𝜇𝜈 + 𝐴𝜇𝐴𝜈𝑔55 𝐴𝜇𝝓

𝐴𝜈𝝓 𝝓
 

 

 

 

Can the zero mode of radion 𝝓(0) be identified with inflaton as well 
as gauge-scalar? 

 

𝑆1 compactification 

4D scalar field 

𝝓(𝑛)(𝑥𝜇) : radion 

(Appelquist & Chodos ‘83)  
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Radion Inflation (Inami et al. ‘12 ) 

   5D-action (gravity + matter) 

       𝑆5 =   𝑑5𝑥 det 𝑔AB 𝑅 + 𝜓 𝑖𝛾𝑀𝐷𝑀 − 𝜇 𝜓  

           (𝑅 : scalar curvature, 𝜇 : matter mass) 

 

The one-loop effective potential is finite. 

 

191018105

6410

64105
1

1









0.948 < ns < 0.977

60~50N

𝑉  (φ) 

1810

Constraint for inflation 

GeV 4 

φ(GeV) 
𝛿𝐻 = 1.91×10−5  
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  How about the model which includes both gauge-scalar and 
radion? 

 

  5D-gauge field       ＋   5D-gravity field 

        

                          inflation         

 

 ？ 

Our Motivation 
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5D-action (Gravity + U(1)-Gauge + Matter)       

       𝑆5=   𝑑5𝑥 −det 𝑔 MN 𝓛𝐺𝑟𝑎𝑣𝑖𝑡𝑦 + 𝓛𝐺𝑎𝑢𝑔𝑒 + 𝓛𝑀𝑎𝑡𝑡𝑒𝑟  

    

    5D-metric    𝑔 MN = 𝝓−
1

3
𝑔𝜇𝜈 + 𝐴𝜇𝐴𝜈𝑔55 𝐴𝜇𝝓

𝐴𝜈𝝓 𝝓
 

  𝓛𝐺𝑟𝑎𝑣𝑖𝑡𝑦 =
1

16𝜋𝐺5
𝑅 (5)  

 

  𝓛𝐺𝑎𝑢𝑔𝑒 = −
1

4
𝑔 MP𝑔 NL𝐹MN𝐹PL                    𝐹MN = 𝜕M𝐵N − 𝜕N𝐵𝑀 

 

  𝓛𝑀𝑎𝑡𝑡𝑒𝑟 = Ψ 𝑖 −𝑖𝑔 
MN𝛤M𝐷N −𝑚 Ψ𝑖            𝐷N = 𝜕N − 𝑖𝑔5

′𝐵N  

                                                                           (𝑔5
′ : 5D gauge coupling const.)                                                                     

(𝑅 (5) : 5D Ricci scalar) 

(𝑚: mass of charged fermions) 

Model 

15 



 𝐵5 (𝑥𝜇,𝑦) = 𝐵5
0

+
1

𝐿
      𝐵5

(𝑛)
(𝑥𝜇)𝑒𝑖

2𝜋𝑛

𝐿
𝑦 

 

  𝝓(𝑥𝜇,𝑦) = 𝝓 (0) +      𝝓 (𝑛)(𝑥𝜇)𝑒𝑖
2𝜋𝑛

𝐿
𝑦 

 

We define  

     𝜽 ≡
𝑔′4𝐿 𝐵5

0

2𝜋
,    𝝓 ≡ 𝝓 (0)  

where 𝑔′4 is the 4D gauge coupling constant and 𝐿 is the 
compactification circumference. 

 

 




n




n

Kaluza-Klein expansions 
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Gravity loop term   

Matter loop term   Gauge loop term   

𝝓 𝝓 

𝝓 

𝝓 


n




n



n

𝝓 𝝓 

𝝓 

𝝓 

𝝓 𝝓 

𝝓 

𝝓 

𝝓 𝝓 

𝝓 

𝝓 

𝝓 𝝓 

𝝓 

𝝓 

𝝓 𝝓 

𝝓 

𝝓 

+ + + + 

+ 

𝝓 𝝓 

𝝓 

𝝓 + 

𝝓 𝝓 

𝝓 

𝝓 

𝝓 

𝝓 

𝝓 

𝜽 
𝜽 

𝜽 

One-loop diagram 
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𝑉 𝜽,𝝓 = 𝑉𝐺𝑟𝑎𝑣𝑖𝑡𝑦(𝝓) + 𝑉𝐺𝑎𝑢𝑔𝑒(𝝓) + 𝑉𝑀𝑎𝑡𝑡𝑒𝑟 𝜽,𝝓        

 

    = −
15

4𝜋2
1

𝝓 2𝐿4
𝜻 5 −

9

4𝜋2
1

𝝓 2𝐿4
𝜻 5                     

             +
3

𝜋2
1

𝝓 2𝐿4
Re[𝑐1𝑳𝒊𝟓(𝑒

−𝐿𝑚𝝓
1

3𝑒𝑖𝜽)+𝑐1𝐿𝑚𝝓
1

3𝑳𝒊𝟒(𝑒
−𝐿𝑚𝝓

1

3𝑒𝑖𝜽) 

                                                                       +𝑐1
1

3
𝐿2𝑚2𝝓

2

3𝑳𝒊𝟑(𝑒
−𝐿𝑚𝝓

1

3𝑒𝑖𝜽)] 

 

  𝑐1 : number of charged fermions  

   𝜻 𝑛 =       
1

𝑘𝑛
 : zeta function 

𝑳𝒊𝒏 𝑥 =      
𝑥𝑘

𝑘𝑛
 : polylogarithm function 




1k




1k

One-loop effective potential 

𝜽 ≡
𝑔′4𝐿 𝐵5

0

2𝜋
,    𝝓 ≡ 𝝓 (0)  
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• 𝑉 𝜽,𝝓  goes to zero at large value of 𝝓 

     𝑳𝒊𝒏(𝑒
−𝐿𝑚𝝓

1

3)~𝑒−𝐿𝑚𝝓
1

3 → 0 

    ∴ 𝑉 𝜽,𝝓 ≈
1

𝝓 2𝐿4
[−8𝜻 5 ] → 0   (𝝓 → 0) 

 

• 𝑉 𝜽,𝝓  at small 𝝓 

 𝑉 𝜽,𝝓 =
3

4𝜋2
1

𝝓 2𝐿4
[−8𝜻 5 + 4𝑐1𝑳𝒊𝟓 𝑒𝑖𝜽 −

8

3
𝑐1𝐿𝑚𝝓

1

3𝑳𝒊𝟑 𝑒𝑖𝜽 −

                                                                                             
4

3
𝑐1𝐿

2𝑚2𝝓
2

3𝑳𝒊𝟐 𝑒𝑖𝜽 ] 

  

  Note that the sign of the matter contribution is positive or negative 
depending on the value of 𝜽 while the graviton and gauge boson 
contributions are always negative sign(attractive). 

Approximation of the potential for some values of 𝝓 and 𝜽 
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Gauge-scalar 𝜽 contribution makes the potential unstable. 

 

3D-Graph  
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𝜽 ≠ 𝜋 case 

 

 

 

 

 

𝜽 = 𝜋 case 

 

𝜽-dependence 
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But inflation needs a stable minimum in scalar potential for reheating. 

 

The charged fermions are coupled with gauge-scalar 𝜽. That is why 
gauge-scalar 𝜽 contribution makes the potential unstable.  

 

 

We believe that adding the contribution caused by 
neutral fermions is a good way to obtain stable 
potential. 

Adding the neutral fermions 
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𝑉 𝜽,𝝓 = 𝑉𝐺𝑟𝑎𝑣𝑖𝑡𝑦(𝝓) + 𝑉𝐺𝑎𝑢𝑔𝑒(𝝓) + 𝑉𝑀𝑎𝑡𝑡𝑒𝑟 𝜽,𝝓        

= −
15

4𝜋2
1

𝝓 2𝐿4
𝜻 5 −

9

4𝜋2
1

𝝓 2𝐿4
𝜻 5               

    +
3

𝜋2
1

𝝓 2𝐿4
Re[𝑐2𝑳𝒊𝟓(𝑒

−𝐿𝜇𝝓
1

3)+𝑐2𝐿𝜇𝝓
1

3𝑳𝒊𝟒(𝑒
−𝐿𝜇𝝓

1

3) 

                                             +𝑐2
1

3
𝐿2𝜇2𝝓

2

3𝑳𝒊𝟑(𝑒
−𝐿𝜇𝝓

1

3) 

                              +𝑐1𝑳𝒊𝟓(𝑒
−𝐿𝑚𝝓

1

3𝑒𝑖𝜽)+𝑐1𝐿𝑚𝝓
1

3𝑳𝒊𝟒(𝑒
−𝐿𝑚𝝓

1

3𝑒𝑖𝜽) 

                                             +𝑐1
1

3
𝐿2𝑚2𝝓

2

3𝑳𝒊𝟑(𝑒
−𝐿𝑚𝝓

1

3𝑒𝑖𝜽)] 

𝑐2 : number of neutral fermions  

  𝜇 : mass of neutral fermions  

Modified potential 
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• 𝑉 𝜽,𝝓  goes to zero at large value of 𝝓 

     𝑳𝒊𝒏(𝑒
−𝐿𝑚𝝓

1

3)~𝑒−𝐿𝑚𝝓
1

3 → 0 

    ∴ 𝑉 𝜽,𝝓 ≈
1

𝝓 2𝐿4
[−8𝜻 5 ] → 0   (𝝓 → 0) 

 

• 𝑉 𝜽,𝝓  at small 𝝓 
𝑉 𝜽,𝝓

=
3

4𝜋2
1

𝝓 2𝐿4
[ −8 + 4𝑐2 𝜻 5 −

8

3
𝑐2𝐿𝜇𝝓

1
3𝜻 3

−
4

3
𝑐2𝐿

2𝜇2𝝓
2
3𝜻 2 + 4𝑐1𝑳𝒊𝟓 𝑒𝑖𝜽 −

8

3
𝑐1𝐿𝑚𝝓

1
3𝑳𝒊𝟑 𝑒𝑖𝜽

−
4

3
𝑐1𝐿

2𝑚2𝝓
2
3𝑳𝒊𝟐 𝑒𝑖𝜽 ] 

 

Approximation of the potential for some values of 𝝓 and 𝜽 
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𝜽 ≠ 𝜋 case 

 

 

 

 

 

𝜽 = 𝜋 case 

 

𝜽-dependence 
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Neutral fermions is not coupled with gauge-scalar 𝜽 and contribute as 
the repulsive potential. 

We achieve a stable minimum in the potential when 𝑐2 ≥ 2 + 𝑐1. 

3D-Graph  
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• We calculate the one-loop effective potential which is 
dominated by both radion 𝝓 and gauge-scalar 𝜽. 

 

• The stable effective potential can be obtained by the 5D U(1) 
gauge plus the 5D gravity theory. 

 

• Both gravity and gauge loops are attractive. The charged 
fermions contribution can become repulsive or attractive 
depending on the value of gauge-scalar 𝜽. We need to add 
the neutral fermions to achieve a stable minimum in the 
effective potential 𝑉 𝜽,𝝓  for all values of gauge-scalar 𝜽. 

 

Conclusion 
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Discussion 

• We have to check if 𝑉 𝜽,𝝓  satisfies all constraints for inflation 
and the possibility of hybrid inflation model. (work in progress) 

 

• We progress in the non-abelian gauge theory. We investigate 
the 5D SU(2) gauge plus the 5D gravity theory. How effects is 
given by the self-interaction of the 5D gauge field?                 
(work in progress) 
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Thank you for your kind attention. 
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the compactification circumference 𝐿 = 3 × 10−17 Gev−1 

the number of the charged fermions 𝑐1 = 6 

the mass of the charged fermions m = 1 × 1010 Gev 

the number of the neutral fermions 𝑐2 = 3 

the mass of the neutral fermions 𝜇 = 1 × 1010 Gev 
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