Multi-Higgs doublet models with spontaneous Higgs symmetry breaking

Chaehyun Yu (KIAS)

Based on PLB 717, 202 (2013); JHEP03 (2013) 151; arXiv:1309.7156 collaborationwith P. Ko (KIAS) and Yuji Omura (TUM)

PASCOS 2013, Taipei, Taiwan, Nov 21, 2013

A Higgs boson

- A Higgs boson was discovered at LHC.
- spin and parity : 0⁺ (other hypotheses are excluded at 95% C.L. or higher)
- "Is it the Standard Model Higgs?" is far from being settled.
 - the SM Higgs boson?
 - one of Higgs bosons in an extended model?
- Multi-Higgs scenarios may be motivated by SUSY or GUT, etc.
- two Higgs doublet models and chiral U(1)' models (MHDM)
 - Higgs physics (heavy, pseudoscalar, charged Higgs physics)
 - dark matter physics (Inert doublet model)
 - experimental anomalies (top A_{FB} at Tevatron, $B \rightarrow D(*)\tau v$ at BaBAR)

Two Higgs Double Model

• One of the simplest models to extend the SM Higgs sector, but have rich phenomenology.

- In general, the models with many Higgs fields suffer from Flavor changing process.
- strong constraints on the Flavor changing neutral current (FCNC).

$$M(\mathbf{B}_{d}-\overline{\mathbf{B}}_{d}) \sim \frac{(\mathbf{y}_{t}^{2} \mathbf{V}_{tb}^{*} \mathbf{V}_{td})^{2}}{16\pi^{2} m_{t}^{2}} + \mathbf{c}_{\mathbf{NP}} \frac{1}{\Lambda^{2}}$$

$$\sim 1 \xrightarrow{\text{tree/strong + generic flavor}} \Lambda \gtrsim 2 \times 10^4 \text{ TeV [K]}$$

$$\sim 1/(16\pi^2) \xrightarrow{\text{loop + generic flavor}} \Lambda \gtrsim 2 \times 10^3 \text{ TeV [K]}$$

$$\sim (y_t V_{ti}^* V_{tj})^2 \xrightarrow{\text{tree/strong + "alignment"}} \Lambda \gtrsim 5 \text{ TeV [K \& B]}$$

$$\sim (y_t V_{ti}^* V_{tj})^2/(16\pi^2) \xrightarrow{\text{loop + "alignment"}} \Lambda \gtrsim 0.5 \text{ TeV [K \& B]}$$

From Gino Isidori's talk at KEKPH 2013 FALL ³

Z₂ symmetry

• A simple way to avoid FCNC problem is to assign ad hoc Z_2 symmetry.

→ Natural Flavor Conservation (NFC). Glashow, Weinberg, PRD15, 1958 (1977)

Fermions of same electric charges get their masses from one Higgs VEV. ~ achieved by assigning new distinct charges to the two Higgs doublets as well as SM fermions.

$$Z_2: (H_1, H_2) \to (+H_1, -H_2)$$

• Type I: $V_y = y_{ij}^U \overline{Q}_{Li} (\widehat{H}) U_{Rj} + y_{ij}^D \overline{Q}_{Li} (H) D_{Rj} + y_{ij}^E \overline{L}_i (H) E_{Rj} + y_{ij}^N \overline{L}_i (\widehat{H}) N_{Rj}$

Туре	H_1	H_{2}	U_{R}	D_{R}	E_R	N_{R}	Q_L, L	
Ι	+	_	+	+	+	+	+	
II	+	—	+	_	—	+	+	
Х	+	—	+	+	_	—	+	
Y	+	_	+	_	+	_	+	

Z₂ symmetry

• A simple way to avoid FCNC problem is to assign ad hoc Z_2 symmetry.

→ Natural Flavor Conservation (NFC). Glashow, Weinberg, PRD15, 1958 (1977)

Fermions of same electric charges get their masses from one Higgs VEV. ~ achieved by assigning new distinct charges to the two Higgs doublets as well as SM fermions.

$$Z_2: (H_1, H_2) \to (+H_1, -H_2)$$

• Type II : $V_{y} = y_{ij}^{U} \overline{Q}_{Li} H_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L} H_{1} N_{Rj}$

Туре	H_1	H_{2}	U_R	D_{R}	E_R	N_{R}	Q_L, L	
Ι	+	—	+	+	+	+	+	
II	+	_	+	_	—	+	+	
Х	+	—	+	+	—	—	+	
Y	+	_	+	_	+		+	

Generic problems of 2HDM

- It is well known that discrete symmetry could generate a domain wall problem when it is spontaneously broken.
- Usually the Z₂ symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z2 symmetric 2HDM potential

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.]$$

• the origin of such a discrete symmetry and softly breaking term?

2HDM with spontaneous Higgs Symmetry breaking

propose to replace the Z_2 symmetry in 2HDM by new U(1)_H symmetry associated with Higgs flavors.

 $Z_2 \rightarrow$ gauged $U(1)_H \rightarrow$ massless mode is eaten \rightarrow light gauge boson (Z_H) disfavored by the ρ parameter

• To make Z_H heavy, one may introduce a singlet scalar Φ .

$$\Phi H_1^{\dagger} H_2 \rightarrow \left\langle \Phi \right\rangle H_1^{\dagger} H_2$$

- H_1 and H_2 have different U(1)_H charges.
- Higgs signal will be changed by Φ and Z_{H} .
- no domain wall problem.

Type-I 2HDM

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_H$ with RH neutrino.

U_R	D_R	Q_L	L	E_{R}	N_{R}	H_{1}
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$

There appear an infinite number of new models.

Type-I 2HDM

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ with RH neutrino.

U_{R}	D_R	$Q_{\scriptscriptstyle R}$	L	E_{R}	N_{R}	H_{1}	Туре
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	
0	0	0	0	0	0	0	$h_2 \neq 0$
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$
1	-1	0	0	-1	1	1	$U(1)_R$
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_{\gamma}$

- SM fermions are $U(1)_{H}$ singlets.
- Z_H is fermiophobic and Higgphilic.
- $H^{\pm}W^{\mp}Z_{H}$ is the main source of production and discovery of Z_{H} .

Type-II 2HDM

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

 $V_{y} = y_{ij}^{U} \overline{Q}_{Li} \widetilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{2} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{2} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \widetilde{H}_{1} N_{Rj}$

U_R	D_R	$Q_{\scriptscriptstyle L}$	L	E_{R}	N_{R}	H_1	H_2
и	0	0	0	0	и	и	0

• Requires extra chiral fermions for cancellation of gauge anomaly.

for example, $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$.

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Q^i	3	2	1/6	-1/3	1	-1	-2
U_R^i	3	1	2/3	2/3	-1	1	2
D_R^i	3	1	-1/3	-1/3	-1	-3	-1
L_i	1	2	-1/2	0	1	3	1
E_R^i	1	1	-1	0	-1	1	2
N_R^i	1	1	0	1	-1	5	5
H_1	1	2	1/2	0	2	2	-1
H_2	1	2	1/2	1	-2	2	4

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	U(1)	η
q_L^i	3	1	-1/3	2/3	-2	2	4	
q_R^i	3	1	-1/3	-1/3	2	2	-1	
l_L^i	1	2	-1/2	0	-2	-2	1	
l_R^i	1	2	-1/2	-1	2	-2	-4	
n_L^i	1	1	0	-1	4	0	-5	
	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$	
Φ	1	1	0	1	-4	0	5	1

Higgs Potential

• in the ordinary 2HDM with Z₂ symmetry

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c].$$

not invariant under U(1)_H

• in the case with Φ , $H_1^{\dagger}H_2\Phi$ is gauge-invariant if $h_{\phi} = h_1 - h_2$.

$$\Delta V = m_{\Phi}^2 \Phi^{\dagger} \Phi + \frac{\lambda_{\Phi}}{2} (\Phi^{\dagger} \Phi)^2 + (\mu H_1^{\dagger} H_2 \Phi + h.c.) + \mu_1 H_1^{\dagger} H_1 \Phi^{\dagger} \Phi + \mu_2 H_2^{\dagger} H_2 \Phi^{\dagger} \Phi, \qquad \text{Source of pseudo-scalar mass}$$

• in the 2HDM with U(1)_H

$$V = \hat{m}_{1}^{2} (|\Phi|^{2}) H_{1}^{\dagger} H_{1} + \hat{m}_{2}^{2} (|\Phi|^{2}) H_{2}^{\dagger} H_{2} - \left(m_{3}^{2} (\Phi) H_{1}^{\dagger} H_{2} + h.c. \right) + \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} (H_{1}^{\dagger} H_{1}) (H_{2}^{\dagger} H_{2}) + \lambda_{4} |H_{1}^{\dagger} H_{2}|^{2} + m_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4}.$$

$$\hat{m}_{i}^{2} (|\Phi|^{2}) = m_{i}^{2} + \widetilde{\lambda}_{i} |\Phi|^{2} \qquad m_{3}^{2} (\Phi) = \mu \Phi^{n}, \text{ where } n = (q_{H_{1}} - q_{H_{2}})/q_{\Phi}$$

Higgs Potential

VEVs and Higgs fields in the interaction eigenstates

$$H_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{v_{i}}{\sqrt{2}} + \frac{1}{\sqrt{2}}(h_{i} + i\chi_{i}) \end{pmatrix}, \Phi = \frac{1}{\sqrt{2}}(v_{\Phi} + h_{\Phi} + i\chi_{\Phi}).$$

- charged Higgs $\begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} G^+ + \begin{pmatrix} -\sin \beta \\ \cos \beta \end{pmatrix} H^+$
- pseudoscalar Higgs $\begin{pmatrix} \chi_{\Phi} \\ \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \cos \beta \\ \sin \beta \end{pmatrix} G_{1} + \frac{v_{\Phi}}{\sqrt{v_{\Phi}^{2} + (nv\cos\beta\sin\beta)^{2}}} \begin{pmatrix} 1 \\ \frac{nv}{v_{\Phi}}\cos\beta\sin^{2}\beta \\ -\frac{nv}{v_{\Phi}}\cos^{2}\beta\sin\beta \end{pmatrix} G_{2} \\
 + \frac{v_{\Phi}}{\sqrt{v_{\Phi}^{2} + (nv\cos\beta\sin\beta)^{2}}} \begin{pmatrix} \frac{nv}{v_{\Phi}}\cos\beta\sin\beta \\ -\sin\beta \\ \cos\beta \end{pmatrix} A.$

• neutral Higgs $\begin{pmatrix}
h_{\Phi} \\
h_{1} \\
h_{2}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 \cos \alpha - \sin \alpha \\
0 \sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{1} & 0 - \sin \alpha_{1} \\
0 & 1 & 0 \\
\sin \alpha_{1} & 0 & \cos \alpha_{1}
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{2} - \sin \alpha_{2} & 0 \\
\sin \alpha_{2} & \cos \alpha_{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\tilde{h} \\
H \\
h
\end{pmatrix}$

2 charged Higgs + 1 pseudoscalar Higgs + 3 neutral Higgs bosons

Theoretical constraints

• perturbativity

- couplings should not be larger than some values to make a perturbative treatment meaningful.

- unitarity
 - the scattering matrix elements satisfy unitary limits.
- vacuum stability
 - Higgs potential is bounded from below.

 $\langle \Phi \rangle = 0$ direction

$$\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 > -\sqrt{\lambda_1 \lambda_2},$$

$$\langle \Phi \rangle \neq 0 \text{ direction}$$

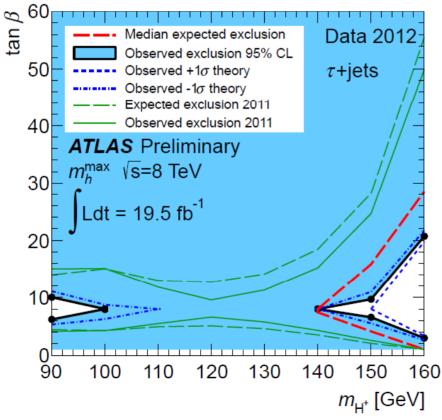
$$\lambda_{\Phi} > 0, \ \lambda_{1} > \frac{\tilde{\lambda}_{1}^{2}}{\lambda_{\Phi}}, \ \lambda_{2} > \frac{\tilde{\lambda}_{2}^{2}}{\lambda_{\Phi}}, \ \lambda_{3} - \frac{\tilde{\lambda}_{1}\tilde{\lambda}_{2}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_{1} - \frac{\tilde{\lambda}_{1}^{2}}{\lambda_{\Phi}}\right)\left(\lambda_{2} - \frac{\tilde{\lambda}_{2}^{2}}{\lambda_{\Phi}}\right)},$$

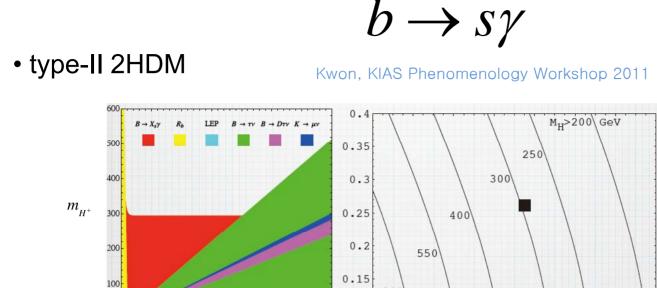
$$\lambda_{3} + \lambda_{4} - \frac{\tilde{\lambda}_{1}\tilde{\lambda}_{2}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_{1} - \frac{\tilde{\lambda}_{1}^{2}}{\lambda_{\Phi}}\right)\left(\lambda_{2} - \frac{\tilde{\lambda}_{2}^{2}}{\lambda_{\Phi}}\right)}.$$

Charged Higgs boson at LHC

 $pp \rightarrow t\overline{t} \rightarrow b\overline{b}W^+H^-$

• type-II 2HDM





60

70

50

900

 m_{H^+} > 300 GeV @ 95% CL for all tan β

3

3.2

3.4

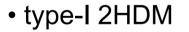
3.6

3.8

4

4.2

2.8



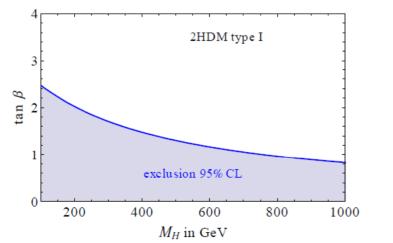
10

20

30

tanβ

40



Hermann, Misiak, Steinhauser, JHEP1211 (2012) 036

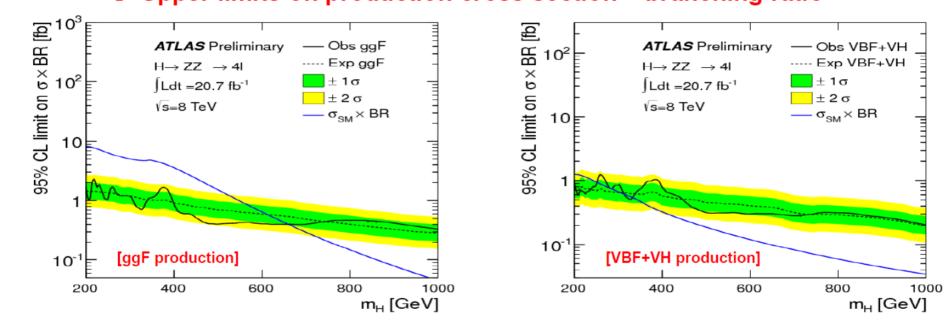
$\tan\beta \ge 1$

Heavy Higgs search at LHC

 $H \rightarrow ZZ \rightarrow 4l$

 $\mu_j^i = \frac{\sigma(pp \to h)^j \operatorname{Br}(h \to i)}{\sigma(pp \to h)^j_{\mathrm{SM}} \operatorname{Br}(h \to i)_{\mathrm{SM}}}$

➔ Upper limits on production cross section × branching ratio



ATLAS-CONF-2013-013

 $\mu_{\rm VBF}^{ZZ} \lesssim 1$

 $\mu_{qq}^{ZZ} \lesssim 0.1$

EWPOs in 2HDM with $U(1)_{H}$

- SM + extended Higgs sector + Z_H (+ extra fermions).
- oblique parameters : S,T,U

- the dominant effects of new physics appear in self energies of gauge bosons.

$$M_{w} = 0.03 \pm 0.10, \ T = 0.05 \pm 0.12, \ U = 0.03 \pm 0.10,$$

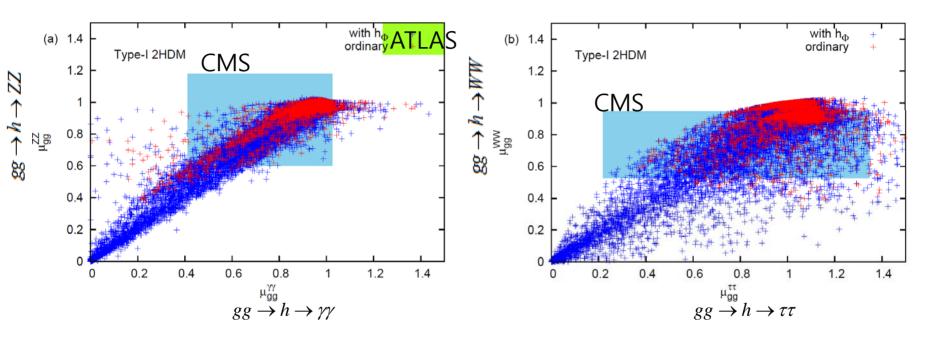
Baak et al., EPJC 72, 2205 (2012)

- If Z_H couples with the SM fermions, need to analyze full one-loop amplitudes with Z_H .

- consider two cases.
- 1. Z_H is decoupled in the limit of m_{Z_H} >>EW scale.
- 2. Z_H is fermiophobic for u=d=0.

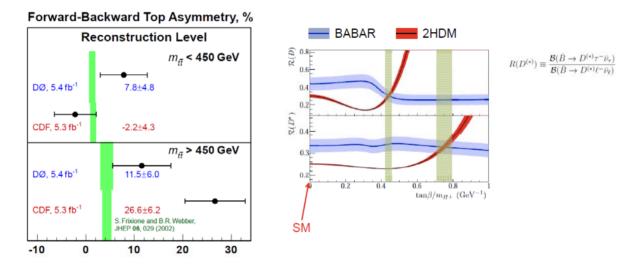
Type-I 2HDM with h_{Φ}

the gg fusion



- consistent with CMS in the 1σ level while consistent with ATLAS in the 2σ .
- difficult to distinguish because the current experimental values are consistent with the SM prediction.
- essential to discover the extra scalar bosons and the new gauge boson.

• 2HDM with spontaneous Higgs symmetry breaking respects the MFV hypothesis, but experimental anomalies imply large FCNCs.



- we slightly breaks the NFC crietrion.
- assign flavor-dependent $U(1)_{H}$ charges to generate FCNCs.
- difficult to assign flavor-dependent charges to down-type quarks due to the strong constraints from FCNC experiments \rightarrow assign U(1)' charges only to right-handed up-type quarks (flavor-dependent).

Charge assignment : SM fermions

	SU(3)	SU(2)	$U(1)_Y$	U(1)'	
Q_1	3	2	1/6	q_L	
Q_2	3	2	1/6	q_L	
Q_3	3	2	1/6	q_L	
$\overline{D_1}$	$\overline{3}$	1	1/3	$-q_L$	
$\overline{D_2}$	$\overline{3}$	1	1/3	$-q_L$	
$\overline{D_3}$	$\overline{3}$	1	1/3	$-q_L$	_
$\overline{U_1}$	$\overline{3}$	1	-2/3	u_1	
$\overline{U_2}$	$\overline{3}$	1	-2/3	u_2	
$\overline{U_3}$	$\overline{3}$	1	-2/3	u_3	
H	1	2	1/2	0	

Left-handed quarks and righthanded down-type quarks have universal couplings.

Flavor-dependent

Charge assignment : Higgs fields

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'
H_1	1	2	1/2	$-q_L - u_1$
H_2	1	2	1/2	$-q_L - u_2$
H_3	1	2	1/2	$-q_L - u_3$
Φ	1	1	1	$-q_{\Phi}$

 \bullet introduce three Higgs doublets charged under U(1)' in addition to H uncharged under U(1)'.

$$V_{y} = y_{i1}^{u} H_{1} \overline{U_{1}} Q_{i} + y_{i2}^{u} H_{2} \overline{U_{2}} Q_{i} + y_{i3}^{u} H_{3} \overline{U_{3}} Q_{i}$$
$$+ y_{ij}^{d} \overline{D_{j}} Q_{i} i \tau_{2} H^{\dagger}$$
$$+ y_{ij}^{e} \overline{E_{j}} L_{i} i \tau_{2} H^{\dagger} + y_{ij}^{n} H \overline{N_{j}} L_{i}.$$

• The U(1)' is spontaneously broken by U(1)' charged complex scalar Φ .

• Anomaly cancelation requires extra fermions I: SU(2) doublets

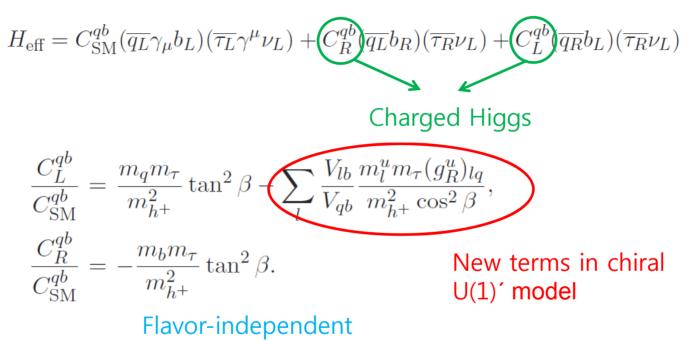
	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'			
Q'	3	2	1/6	$-(q_1 + q_2 + q_3)$			
D'_R	3	1	-1/3	$-(d_1+d_2+d_3)$			
U'_R	3	1	2/3	$-(u_1+u_2+u_3)$		_	one extra generation
L'	1	2	-1/2	0			SU(2) _L ² ·U(1)'
E'	1	1	-1	0			
l_{L1}	1	2	-1/2	Q_L	ן		
l_{R1}	1	2	-1/2	Q_R			vector-like
l_{L2}	1	2	-1/2	$-Q_L$		-	pairs
l_{R2}	1	2	-1/2	$-Q_R$			U(1)' ² ·U(1)

a candidate for CDM

22

Effective Hamiltonian

• Effective Hamiltonian for $B \rightarrow D(*)\tau v$



- diagonalization matrix g_R

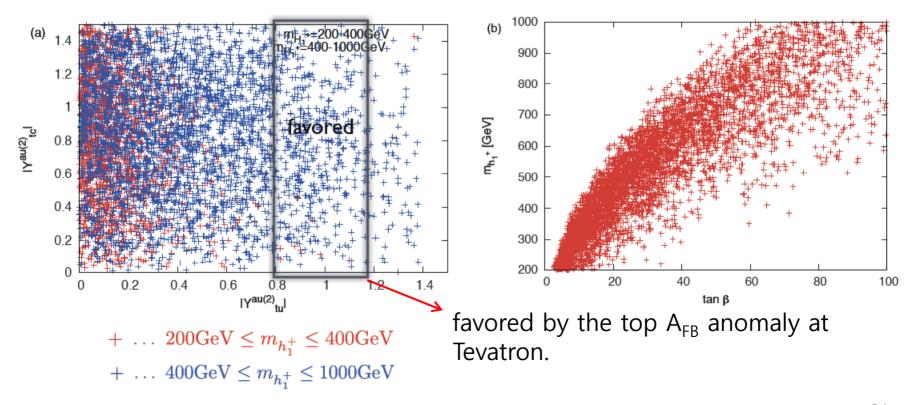
 $(g_R^u)_{ij} = \delta_{ij}$: the same as the type-II 2HDM.

 $(g_R^u)_{ij} \neq \delta_{ij}$: generate non-MFV interactions.

3HDM

$$(u_k) = (1, 0, -1)$$

- 2 pairs of charged Higgs + 2 CP-odd pseudoscalars.
- \bullet parameter spaces are large \rightarrow not difficult to find the allowed region without fine-tuning.
- ex) degenerate case $m_{h_1^+} = m_{h_2^+}$



Conclusions

• We proposed a new resoluton of the Higgs mediated FCNC problem in 2HDM with gauged U(1)_H.

• rich phenomenology : extra scalars, Z_H , dark matter, and extra fermions.

• might be possible to distinguish our model from the ordinary 2HDM in a certain parameter regions, but essential to discover the new scalars and gauge boson.

- We also constructed MHDMs, where gauged U(1) controls FCNC.
- In 3HDM, it might be possible to achieve top A_{FB} , BABAR discrepancies, and $B \rightarrow \tau v$, but necessary more detailed study.

Back up

2HDM with fermiophobic Z_H

- realized with u=d=0 and assume $\alpha_1 = \alpha_2 = 0$.
- Z_H can mix with the Z boson.

$$M^{2} = \begin{pmatrix} g_{Z}^{2}v^{2} & -g_{Z}g_{H}(h_{1}v_{1}^{2} + h_{2}v_{2}^{2}) \\ -g_{Z}g_{H}(h_{1}v_{1}^{2} + h_{2}v_{2}^{2}) & g_{H}^{2}(h_{1}^{2}v_{1}^{2} + h_{2}^{2}v_{2}^{2}) \end{pmatrix}$$

- affects EWPOs and Drell-Yan process.
- requires that corrections to the most sensitive variables are within the errors of the SM prediction.

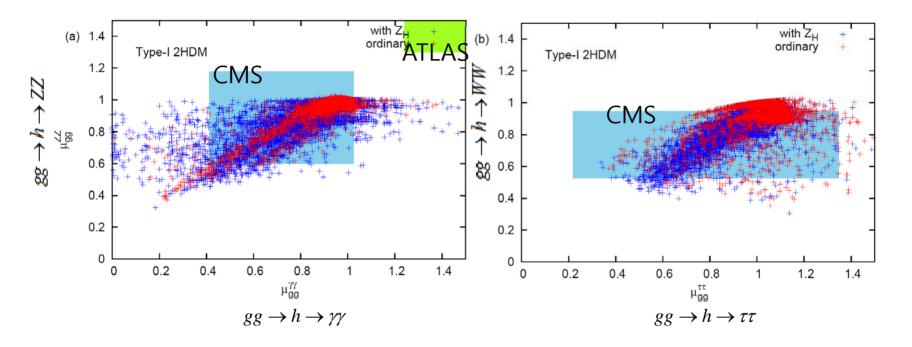
$$\rho_{2\text{HDM}}^{\text{tree}} = 1 + \frac{\Delta M_{ZZH}^2}{M_{Z0}^2} \xi, \text{ where } \rho_{\text{SM}} = 1.01051 \pm 0.00011.$$

 $\Gamma_Z = 2.4961 \pm 0.0010 \text{ GeV}.$

- requires $\xi < 10^{-3}$, which is safe for the Drell-Yan process at LHC.
- impose the constraints on S,T,U at the one-loop level.

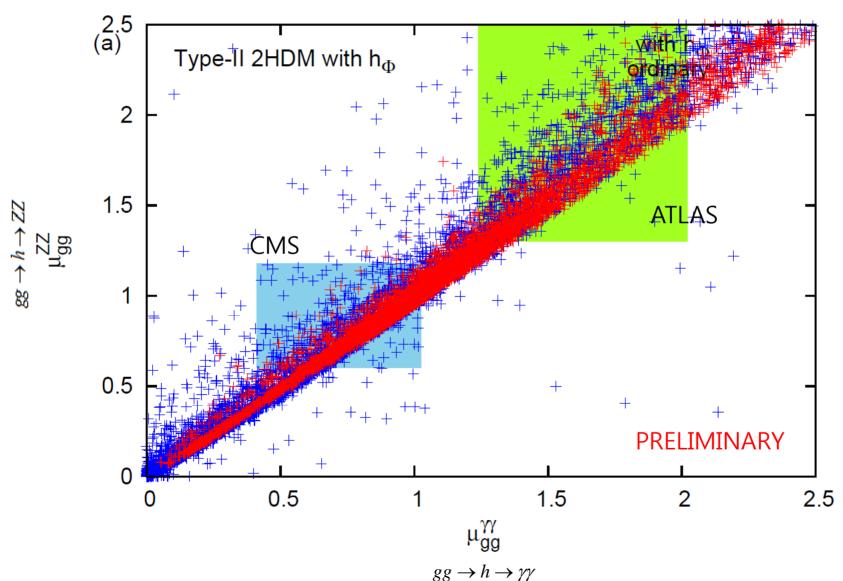
Type-I 2HDM with fermiophobic Z_H

• gg fusion



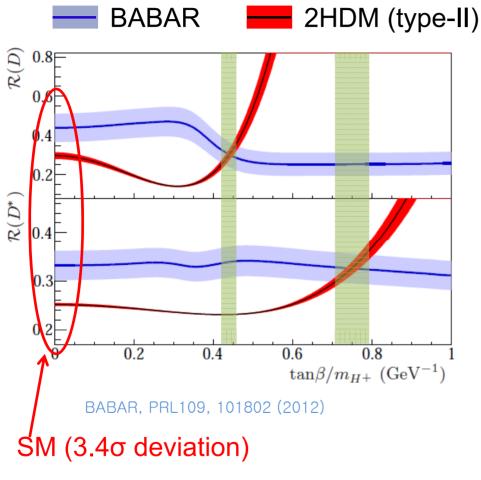
Type-II 2HDM with h_{Φ}

gg fusion



29

 $B \rightarrow D^{(*)} \tau \nu$



$$R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})}$$

$$\frac{h_{m}}{p} = \frac{1}{m_{\pi}} \frac{1}{m_{H^{\pm}}} \frac{1}{m_{H^{\pm}}}$$

$$\frac{h_{m}}{p} = \frac{1}{m_{\pi}} \frac{1}{m_{\mu}} \frac{1}{m_{H^{\pm}}}$$

$$\frac{1}{m_{\mu}} \sum m_{\pi} m_{b} \frac{1}{m_{H^{\pm}}}$$

$$\frac{1}{m_{\mu}} \sum m_{\pi} m_{b} \frac{1}{m_{H^{\pm}}}$$

$$\frac{1}{m_{H^{\pm}}}$$

- Combination of R(D) and $R(D^*)$ excludes 2HDMs with 99.8% probability.
- could be explained in the chiral U(1) model.

Ko,Omura,Yu, JHEP03 (2013) 151 30

 $BR(B \rightarrow \tau \nu)$

• type-II 2HDM

Kwon, NRF2013

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = \mathcal{B}_{\rm SM}(B^+ \to \tau^+ \nu_\tau) \times \left[1 - (m_B^2/m_H^2) \tan^2\beta\right]^2$$

